Maximizing expected utility over a knapsack constraint

The expected utility knapsack problem is to pick a set of items whose values are described by random variables so as to maximize the expected utility of the total value of the items picked while satisfying a constraint on the total weight of items picked. We consider the following solution approach for this problem: (i) … Read more

Chance-constrained binary packing problems

We consider a class of packing problems with uncertain data, which we refer to as the chance-constrained binary packing problem. In this problem, a subset of items is selected that maximizes the total profit so that a generic packing constraint is satisfied with high probability. Interesting special cases of our problem include chance-constrained knapsack and … Read more

On parallelizing dual decomposition in stochastic integer programming

For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Car\o{}e and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the \textit{master} program by using structure-exploiting interior-point solvers. Our results demonstrate the potential … Read more

Threshold Boolean Form for Joint Probabilistic Constraints with Random Technology Matrix

We develop a new modeling and exact solution method for stochastic programming problems that include a joint probabilistic constraint in which the multirow random technology matrix is discretely distributed. We binarize the probability distribution of the random variables in such a way that we can extract a threshold partially defined Boolean function (pdBf) representing the … Read more

Dynamic sequencing and cut consolidation for the parallel hybrid-cut nested L-shaped method

The Nested L-shaped method is used to solve two- and multi-stage linear stochastic programs with recourse, which can have integer variables on the first stage. In this paper we present and evaluate a cut consolidation technique and a dynamic sequencing protocol to accelerate the solution process. Furthermore, we present a parallelized implementation of the algorithm, … Read more

Solving Security Constrained Optimal Power Flow Problems by a Structure Exploiting Interior Point Method

The aim of this paper is to demonstrate a new approach to solve the linearized (n-1) security constrained optimal power flow (SCOPF) problem by a structure exploiting interior point solver. Firstly, we present a reformulation of the linearized SCOPF model, in which most matrices that need to be factorized are constant. Hence, most factorizations and … Read more

SDDP for multistage stochastic linear programs based on spectral risk measures

We consider risk-averse formulations of multistage stochastic linear programs. For these formulations, based on convex combinations of spectral risk measures, risk-averse dynamic programming equations can be written. As a result, the Stochastic Dual Dynamic Programming (SDDP) algorithm can be used to obtain approximations of the corresponding risk-averse recourse functions. This allows us to define a … Read more

Computational aspects of risk-averse optimisation in two-stage stochastic models

In this paper we argue for aggregated models in decomposition schemes for two-stage stochastic programming problems. We observe that analogous schemes proved effective for single-stage risk-averse problems, and for general linear programming problems. A major drawback of the aggregated approach for two-stage problems is that an aggregated master problem can not contain all the information … Read more

Optimal Execution Under Jump Models For Uncertain Price Impact

In the execution cost problem, an investor wants to minimize the total expected cost and risk in the execution of a portfolio of risky assets to achieve desired positions. A major source of the execution cost comes from price impacts of both the investor’s own trades and other concurrent institutional trades. Indeed price impact of … Read more

On solving multistage stochastic programs with coherent risk measures

We consider a class of multistage stochastic linear programs in which at each stage a coherent risk measure of future costs is to be minimized. A general computational approach based on dynamic programming is derived that can be shown to converge to an optimal policy. By computing an inner approximation to future cost functions, we … Read more