Robust Generalization despite Distribution Shift via Minimum Discriminating Information

Training models that perform well under distribution shifts is a central challenge in machine learning. In this paper, we introduce a modeling framework where, in addition to training data, we have partial structural knowledge of the shifted test distribution. We employ the principle of minimum discriminating information to embed the available prior knowledge, and use … Read more

Markov Chain Sampling of Hidden Relay States for Economic Dispatch with Cascading Failures

Independent system operators (ISO) of electric power networks aim to dispatch electricity economically while maintaining system reliability. NERC (North America Electric Reliability Council) requires the transmission network to be (N-1)-secure, i.e., to have sufficient supply to satisfy demand in the event of the failure of any single resource in the network. Such a policy is … Read more

A new matheuristic and improved instance generation for kidney exchange programmes

Kidney exchange programmes increase the rate of living donor kidney transplants, and operations research techniques are vital to such programmes. These techniques, as well as changes to policy regarding kidney exchange programmes, are often tested using random instances created by a Saidman generator. We devise a new matheuristic that can optimally solve a benchmark set … Read more

A stochastic alternating balance k-means algorithm for fair clustering

In the application of data clustering to human-centric decision-making systems, such as loan applications and advertisement recommendations, the clustering outcome might discriminate against people across different demographic groups, leading to unfairness. A natural conflict occurs between the cost of clustering (in terms of distance to cluster centers) and the balance representation of all demographic groups … Read more

Graph Signatures: Identification and Optimization

We introduce a new graph-theoretic paradigm called a graph signature that describes persistent patterns in a sequence of graphs. This framework is motivated by the need to detect subgraphs of significance in temporal networks, e.g., social and biological networks that evolve over time. Because the subgraphs of interest may not all “look alike” in the … Read more

On the Polyhedrality of the Chvatal-Gomory Closure

In this paper, we provide an equivalent condition for the Chvatal-Gomory (CG) closure of a closed convex set to be finitely-generated. Using this result, we are able to prove that, for any closed convex set that can be written as the Minkowski sum of a compact convex set and a closed convex cone, its CG … Read more

Sequential constant rank constraint qualifications for nonlinear semidefinite programming with applications

We present new constraint qualification conditions for nonlinear semidefinite programming that extend some of the constant rank-type conditions from nonlinear programming. As an application of these conditions, we provide a unified global convergence proof of a class of algorithms to stationary points without assuming neither uniqueness of the Lagrange multiplier nor boundedness of the Lagrange … Read more

Multi-cover Inequalities for Totally-Ordered Multiple Knapsack Sets

We propose a method to generate cutting-planes from multiple covers of knapsack constraints. The covers may come from different knapsack inequalities if the weights in the inequalities form a totally-ordered set. Thus, we introduce and study the structure of a totally-ordered multiple knapsack set. The valid multi-cover inequalities we derive for its convex hull have … Read more

Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Least squares estimators, when trained on a few target domain samples, may predict poorly. Supervised domain adaptation aims to improve the predictive accuracy by exploiting additional labeled training samples from a source distribution that is close to the target distribution. Given available data, we investigate novel strategies to synthesize a family of least squares estimator … Read more

Lifting convex inequalities for bipartite bilinear programs

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets described by one bipartite bilinear constraint together with bounds, it is always possible to sequentially lift a seed inequality that is valid … Read more