How to Compute a M-stationary point of the MPCC

We discuss here the convergence of relaxation methods for MPCC with approximate sequence of stationary points by presenting a general framework to study these methods. It has been pointed out in the literature, \cite{kanzow2015}, that relaxation methods with approximate stationary points fail to give guarantee of convergence. We show that by defining a new strong … Read more

The New Butterfly Relaxation Methods for Mathematical Program with Complementarity Constraints

We propose a new family of relaxation schemes for mathematical program with complementarity constraints that extends the relaxations of Kadrani, Dussault, Bechakroun from 2009 and the one of Kanzow \& Schwartz from 2011. We discuss the properties of the sequence of relaxed non-linear program as well as stationarity properties of limiting points. A sub-family of … Read more

Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $\cS$ and a finite action space $\cA$. We show that any randomized algorithm needs a running time at least $\Omega(\carS^2\carA)$ to compute an $\epsilon$-optimal policy with high probability. We consider two variants of the MDP where the … Read more

A pattern search and implicit filtering algorithm for solving linearly constrained minimization problems with noisy objective functions

PSIFA -Pattern Search and Implicit Filtering Algorithm- is a derivative-free algorithm that has been designed for linearly constrained problems with noise in the objective function. It combines some elements of the pattern search approach of Lewis and Torczon (2000) with ideas from the method of implicit filtering of Kelley (2011) enhanced with a further analysis … Read more

Optimality of orders one to three and beyond: characterization and evaluation complexity in constrained nonconvex optimization

Necessary conditions for high-order optimality in smooth nonlinear constrained optimization are explored and their inherent intricacy discussed. A two-phase minimization algorithm is proposed which can achieve approximate first-, second- and third-order criticality and its evaluation complexity is analyzed as a function of the choice (among existing methods) of an inner algorithm for solving subproblems in … Read more

On the complexity of the Unit Commitment Problem

This article analyzes how the Unit Commitment Problem (UCP) complexity evolves with respect to the number n of units and T of time periods.A classical reduction from the knapsack problem shows that the UCP is NP-hard in the ordinary sense even for T=1. The UCP is proved to be strongly NP-hard.When either a unitary cost … Read more

Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs

This paper establishes the iteration-complexity of a Jacobi-type non-Euclidean proximal alternating direction method of multipliers (ADMM) for solving multi-block linearly constrained nonconvex programs. The subproblems of this ADMM variant can be solved in parallel and hence the method has great potential to solve large scale multi-block linearly constrained nonconvex programs. Moreover, our analysis allows the … Read more

Asynchronous Coordinate Descent under More Realistic Assumptions

Asynchronous-parallel algorithms have the potential to vastly speed up algorithms by eliminating costly synchronization. However, our understanding to these algorithms is limited because the current convergence of asynchronous (block) coordinate descent algorithms are based on somewhat unrealistic assumptions. In particular, the age of the shared optimization variables being used to update a block is assumed … Read more

Bad semidefinite programs with short proofs, and the closedness of the linear image of the semidefinite cone

Semidefinite programs (SDPs) — some of the most useful and pervasive optimization problems of the last few decades — often behave pathologically: the optimal values of the primal and dual problems may differ and may not be attained. Such SDPs are theoretically interesting and often impossible to solve. Yet, the pathological SDPs in the literature … Read more

Extending the Scope of Robust Quadratic Optimization

We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. In particular, we show how to reformulate the support functions of uncertainty sets represented in terms of matrix norms and cones. Our … Read more