Compact linearization for bilinear mixed-integer problems

We present a compact linearization for a broad class of bilinear 0-1 mixed-integer problems subject to assignment constraints. We apply the linearization to three classes of problems: quadratic assignment, multiprocessor scheduling with communication delays, and graph partitioning, and show that it yields faster solution times. Citation DEI, Politecnico di Milano, Working paper, April 2005. Article … Read more

A Lagrangean Relaxation and Decomposition Algorithm for the Video Placement and Routing Problem

Video on Demand (VoD) is a technology used to provide a number of programs to a number of users on request. In developing a VoD system, a fundamental problem is load balancing, which is further characterized by optimally placing videos to a number of predefined servers and routing the user program requests to available resources. … Read more

Integer-Programming Software Systems

Recent developments in integer-programming software systems have tremendously improved our ability to solve large-scale instances. We review the major algorithmic components of state-of-the-art solvers and discuss the options available to users to adjust the behavior of these solvers when default settings do not achieve the desired performance level. Furthermore, we highlight advances towards integrated modeling … Read more

Network Design Arc Set with Variable Upper Bounds

In this paper we study the network design arc set with variable upper bounds. This set appears as a common substructure of many network design problems and is a relaxation of several fundamental mixed-integer sets studied earlier independently. In particular, the splittable flow arc set, the unsplittable flow arc set, the single node fixed-charge flow … Read more

The value of multi-stage stochastic programming in capacity planning under uncertainty

This paper addresses a general class of capacity planning problems under uncertainty, which arises, for example, in semiconductor tool purchase planning. Using a scenario tree to model the evolution of the uncertainties, we develop a multi-stage stochastic integer programming formulation for the problem. In contrast to earlier two-stage approaches, the multi-stage model allows for revision … Read more

Preemptive scheduling with position costs

This paper is devoted to basic scheduling problems in which the scheduling cost of a job is not a function of its completion time. Instead, the cost is derived from the integration of a cost function over the time intervals on which the job is processed. This criterion is specially meaningful when job preemption is … Read more

Constraint Reduction for Linear Programs with Many Inequality Constraints

Consider solving a linear program in standard form, where the constraint matrix $A$ is $m \times n$, with $n \gg m \gg 1$. Such problems arise, for example, as the result of finely discretizing a semi-infinite program. The cost per iteration of typical primal-dual interior-point methods on such problems is $O(m^2n)$. We propose to reduce … Read more

Generalization of the primal and dual affine scaling algorithms

We obtain a class of primal ane scaling algorithms which generalize some known algorithms. This class, depending on a r-parameter, is constructed through a family of metrics generated by ��r power, r  1, of the diagonal iterate vector matrix. We prove the so-called weak convergence of the primal class for nondegenerate linearly constrained convex … Read more

Solving Multi-Leader-Follower Games

Multi-leader-follower games arise when modeling competition between two or more dominant firms and lead in a natural way to equilibrium problems with equilibrium constraints (EPECs). We examine a variety of nonlinear optimization and nonlinear complementarity formulations of EPECs. We distinguish two broad cases: problems where the leaders can cost-differentiate and problems with price-consistent followers. We … Read more

Robust DWDM Routing and Provisioning under Polyhedral Demand Uncertainty

We present mixed integer linear programming models that are robust in the face of uncertain traffic demands known to lie in a certain polyhedron for the problem of dense wavelength division multiplexing network routing and provisioning at minimal cost. We investigate the solution of the problem in a set of numerical experiments for two models … Read more