New criss-cross type algorithms for linear complementarity problems with sufficient matrices

We generalize new criss-cross type algorithms for linear complementarity problems (LCPs) given with sufficient matrices. Most LCP solvers require apriori information about the input matrix. The sufficiency of a matrix is hard to be checked (no polynomial time method is known). Our algorithm is similar to Zhang’s linear programming, and Akkeleº-Balogh-Illés’s criss-cross type algorithm for … Read more

Stable Matchings for A Generalized Marriage Problem

We show that a simple genralization of the Deferred Acceptance Procedure with men proposing due to Gale and Shapley(1962), yeilds outcomes for a generalized marriage problem, which are necessarily stable. We also show, that any outcome of this prcedure is Weakly Pareto Optimal for Men, i.e., there is no other outcome which all men prefer … Read more

A Grid-Enabled Distributed Branch-and-Bound Algorithm with

This work introduces a distributed branch-and-bound algorithm to be run on computational Grids. Grids are often organized in a hierarchical fashion: clusters of processors connected via high-speed links, while the clusters themselves are geographically distant and connected through slower links. Our algorithm does not employ the usual master-worker paradigm and it considers the hierarchical structure … Read more

On Extracting Maximum Stable Sets in Perfect Graphs Using Lovasz’s Theta Function

We study the maximum stable set problem. For a given graph, we establish several transformations among feasible solutions of different formulations of Lov{\’a}sz’s theta function. We propose reductions from feasible solutions corresponding to a graph to those corresponding to its subgraphs. We develop an efficient, polynomial-time algorithm to extract a maximum stable set in a … Read more

An updated bibliography of GRASP

This document contains references related to GRASP (greedy randomized adaptive search procedure) that have either appeared in the literature or as technical reports. If you are aware of any uncited reference, incorrectly cited reference, or update to a cited reference, please contact Mauricio G. C. Resende at the address given at the end of this … Read more

A GRASP/VND heuristic for the phylogeny problem using a new neighborhood structure

A phylogeny is a tree that relates taxonomic units, based on their similarity over a set of characters. The phylogeny problem consists in finding a phylogeny with the minimum number of evolutionary steps. We propose a new neighborhood structure for the phylogeny problem. A GRASP heuristic based on this neighborhood structure and using VND for … Read more

Randomized Algorithms for Scene Recognition by Inexact Graph Matching

We propose a new method for non-bijective graph matching for model-based pattern recognition. We formulate the search for the best correspondence between a model and an over-segmented image as a new combinatorial optimization problem, defined by the relational attributed graphs representing the model and the image where recognition has to be performed, together with the … Read more

Heuristics for the Phylogeny Problem

A phylogeny is a tree that relates taxonomic units, based on their similarity over a set of characters. The problem of finding a phylogeny with the minimum number of evolutionary steps (the so-called parsimony criterion) is one of the main problems in comparative biology. In this work, we study different heuristic approaches to the phylogeny … Read more

Multiprocessor Scheduling under Precedence Constraints: Polyhedral Results

We consider the problem of scheduling a set of tasks related by precedence constraints to a set of processors, so as to minimize their makespan. Each task has to be assigned to a unique processor and no preemption is allowed. A new integer programming formulation of the problem is given and strong valid inequalities are … Read more

Automatic Scheduling of Hypermedia Documents with Elastic Times]

The problem of automatic scheduling hypermedia documents consists in finding the optimal starting times and durations of objects to be presented, to ensure spatial and temporal consistency of a presentation while respecting limits on shrinking and stretching the ideal duration of each object. The combinatorial nature of the minimization of the number of objects whose … Read more