Global optimization of rational functions: a semidefinite programming approach

We consider the problem of global minimization of rational functions on $\LR^n$ (unconstrained case), and on an open, connected, semi-algebraic subset of $\LR^n$, or the (partial) closure of such a set (constrained case). We show that in the univariate case ($n=1$), these problems have exact reformulations as semidefinite programming (SDP) problems, by using reformulations introduced … Read more

Characterizations of error bounds for lower semicontinuous functions on metric spaces

By using a variational method based on Ekeland’s principle, we give characterizations of the existence of so-called global and local error bounds, for lower semicontinuous functions defined on complete metric spaces. We thus provide a systematic and synthetic approach to the subject, emphasizing the special case of convex functions defined on arbitrary Banach spaces, and … Read more

LMI approximations for cones of positive semidefinite forms

An interesting recent trend in optimization is the application of semidefinite programming techniques to new classes of optimization problems. In particular, this trend has been successful in showing that under suitable circumstances, polynomial optimization problems can be approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over the cone of copositive … Read more

SIAG/Opt Views-and-News Vol 14 No 1

SIAM’s SIAG/Opt Newsletter special issue on Large Scale Nonconvex Optimization. Guest editors Sven Leyffer and Jorge Nocedal, with contributions by Gould, Sachs, Biegler, Waechter, Leyffer, Bussieck and Pruessner. CitationSIAG/Opt Views-and-News, Volume 14 Number 1, April 2003. http://fewcal.uvt.nl/sturm/siagopt/ArticleDownload View PDF

A Multicriteria Approach to Bilevel Optimization

In this paper we study the relationship between bilevel optimization and bicriteria optimization. Given a bilevel optimization problem, we introduce an order relation such that the optimal solutions of the bilevel problem are the nondominated points with respect to the order relation. In the case where the lower level problem of the bilevel optimization problem … Read more

Error Estimates and Poisedness in Multivariate Polynomial Interpolation

We show how to derive error estimates between a function and its interpolating polynomial and between their corresponding derivatives. The derivation is based on a new definition of well-poisedness for the interpolation set, directly connecting the accuracy of the error estimates with the geometry of the points in the set. This definition is equivalent to … Read more

A Branch and Cut Algorithm for Hub Location Problems with Single Assignment

The hub location problem with single assignment is the problem of locating hubs and assigning the terminal nodes to hubs in order to minimize the cost of hub installation and the cost of routing the traffic in the network. There may also be capacity restrictions on the amount of traffic that can transit by hubs. … Read more

The integer hull of a convex rational polytope

Given $A\in Z^{m\times n}$ and $b\in Z^m$, we consider the integer program $\max \{c’x\vert Ax=b;x\in N^n\}$ and provide an equivalent and explicit linear program $\max \{\widehat{c}’q\vert M q=r;q\geq 0\}$, where $M,r,\widehat{c}$ are easily obtained from $A,b,c$ with no calculation. We also provide an explicit algebraic characterization of the integer hull of the convex polytope $P=\{x\in\R^n\vert … Read more

Duality and a Farkas lemma for integer programs

We consider the integer program $\max \{c’ x\,|\,Ax=b,x\in N^n\}$. A formal parallel between linear programming and continuous integration on one side, and discrete summation on the other side, shows that a natural duality for integer programs can be derived from the $Z$-transform and Brion and Vergne’s counting formula. Along the same lines, we also provide … Read more

On the Convergence of Successive Linear Programming Algorithms

We analyze the global convergence properties of a class of penalty methods for nonlinear programming. These methods include successive linear programming approaches, and more specifically the SLP-EQP approach presented in \cite{ByrdGoulNoceWalt02}. Every iteration requires the solution of two trust region subproblems involving linear and quadratic models, respectively. The interaction between the trust regions of these … Read more