Graph Coloring in the Estimation of Sparse Derivative Matrices: Instances and Applications

We describe a graph coloring problem associated with the determination of mathematical derivatives. The coloring instances are obtained as intersection graphs of row partitioned sparse derivative matrices. The size of the graph is dependent on the partition and can be varied between the number of columns and the number of nonzero entries. If solved exactly … Read more

Semidefinite Approximations for Global Unconstrained Polynomial Optimization

We consider here the problem of minimizing a polynomial function on $\oR^n$. The problem is known to be hard even for degree $4$. Therefore approximation algorithms are of interest. Lasserre \cite{lasserre:2001} and Parrilo \cite{Pa02a} have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We … Read more

A moment approach to analyze zeros of triangular polynomial sets

Let $I=(g_1,…, g_n)$ be a zero-dimensional ideal of $ \R[x_1,…,x_n]$ such that its associated set $G$ of polynomial equations $g_i(x)=0$ for all $i=1,…,n$, is in triangular form. By introducing multivariate Newton sums we provide a numerical characterization of polynomials in the radical ideal of $I$. We also provide a necessary and sufficient (numerical) condition for … Read more

Preprocessing sparse semidefinite programs via matrix completion

Considering that preprocessing is an important phase in linear programming, it should be systematically more incorporated in semidefinite programming solvers. The conversion method proposed by the authors (SIAM Journal on Optimization, vol.~11, pp.~647–674, 2000, and Mathematical Programming, Series B, vol.~95, pp.~303–327, 2003) is a preprocessing of sparse semidefinite programs based on matrix completion. This article … Read more

On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics … Read more

Dual Convergence of the Proximal Point Method with Bregman Distances for Linear Programming

In this paper we consider the proximal point method with Bregman distance applied to linear programming problems, and study the dual sequence obtained from the optimal multipliers of the linear constraints of each subproblem. We establish the convergence of this dual sequence, as well as convergence rate results for the primal sequence, for a suitable … Read more

Fortran subroutines for network flow optimization using an interior point algorithm

We describe FORTRAN subroutines for network flow optimization using an interior point network flow algorithm. We provide FORTRAN and C language drivers, as well as C language functions that, together with the subroutines, make up PDNET (Portugal, Resende, Veiga, and Júdice, 2000). The algorithm is described in detail and its implementation is outlined. Usage of … Read more

An annotated bibliography of GRASP

This paper presents an annotated bibliography of greedy randomized adaptive search procedures (GRASP). The bibliography is current up to early 2004. The bibliography contains: background material; tutorials and surveys; enhancements to the basic method; hybrid methods; software; parallel GRASP; graph theory; quadratic and other assignment problems; location, layout, and cutting; covering, clustering, packing, and partitioning; … Read more

An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems

In multicriteria optimization, several objective functions, conflicting with each other, have to be minimized simultaneously. We propose a new efficient method for approximating the solution set of a multiobjective programming problem, where the objective functions involved are arbitary convex functions and the set of feasible points is convex. The method is based on generating warm-start … Read more

Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra

We present a unifying framework to establish a lower-bound on the number of semidefinite programming based, lift-and-project iterations (rank) for computing the convex hull of the feasible solutions of various combinatorial optimization problems. This framework is based on the maps which are commutative with the lift-and-project operators. Some special commutative maps were originally observed by … Read more