An interior point cutting plane method for convex feasibility problem with second-order cone inequalities

Convex feasibility problem in general, is a problem of finding a point in a convex set contains a full dimensional ball and is contained in a compact convex set. We assume that the outer set is described by second-order cone inequalities and propose an analytic center cutting plane technique to solve this problem. We discuss … Read more

The mathematics of eigenvalue optimization

Optimization problems involving the eigenvalues of symmetric and nonsymmetric matrices present a fascinating mathematical challenge. Such problems arise often in theory and practice, particularly in engineering design, and are amenable to a rich blend of classical mathematical techniques and contemporary optimization theory. This essay presents a personal choice of some central mathematical ideas, outlined for … Read more

The Lax conjecture is true

In 1958 Lax conjectured that hyperbolic polynomials in three variables are determinants of linear combinations of three symmetric matrices. This conjecture is equivalent to a recent observation of Helton and Vinnikov. CitationDepartment of Mathematics, Simon Fraser University, CanadaArticleDownload View PDF

Quasi-Newton methods for large-scale distributed parameter estimation

We develop Quasi-Newton methods for distributed parameter estimation problems, where the forward problem is governed by a set of partial differential equations. A Tikhonov style regularization approach yields an optimization problem with a special structure, where the gradients are calculated using the adjoint method. In many cases standard Quasi-Newton methods (such as L-BFGS) are not … Read more

A randomized global optimization method for protein-protein docking

In this paper we report results on the problem of docking two large proteins by means of a two-phase monotonic basin hopping method. Given an appropriate force field which is used to measure the interaction energy between two biomolecules which are considered as rigid bodies, we used a randomized global optimization methods based upon the … Read more

Asymptotic Behavior of Continuous Trajectories for Primal-Dual Potential-Reduction Methods

This article considers continuous trajectories of the vector fields induced by primal-dual potential-reduction algorithms for solving linear programming problems. It is known that these trajectories converge to the analytic center of the primal-dual optimal face. We establish that this convergence may be tangential to the central path, tangential to the optimal face, or in between, … Read more

A methodology for the analysis of parallel GRASP strategies

In this paper, we describe a methodology for the analysis of greedy randomized adaptive search procedures (GRASP). GRASP is a metaheuristic for combinatorial optimization. It usually consists of a construction procedure based on a greedy randomized algorithm and a local search. Hybrid approaches of GRASP with path-relinking developed for the 3-index assignment problem (AP3) and … Read more

GRASP and path-relinking: Recent advances and applications

This paper addresses recent advances and application of hybridizations of greedy randomized adaptive search procedures (GRASP) and path-relinking. We present a template for implementing path-relinking as an intensification procedure for GRASP. Enhancements to the procedure, recently described in the literature, are reviewed. The effectiveness of the procedure is illustrated experimentally. CitationAT&T Labs Research Technical Report, … Read more