A NEW PARTIAL SAMPLE AVERAGE APPROXIMATION METHOD FOR CHANCE CONSTRAINED PROBLEM

In this paper, we present a new scheme of a sampling method to solve chance constrained programs. First of all, a modified sample average approximation, namely Partial Sample Average Approximation (PSAA) is presented. The main advantage of our approach is that the PSAA problem has only continuous variables whilst the standard sample average approximation (SAA) … Read more

Nonanticipative duality, relaxations, and formulations for chance-constrained stochastic programs

We propose two new Lagrangian dual problems for chance-constrained stochastic programs based on relaxing nonanticipativity constraints. We compare the strength of the proposed dual bounds and demonstrate that they are superior to the bound obtained from the continuous relaxation of a standard mixed-integer programming (MIP) formulation. For a given dual solution, the associated Lagrangian relaxation … Read more

Chance-Constrained Multi-Terminal Network Design Problems

We consider a reliable network design problem under uncertain edge failures. Our goal is to select a minimum-cost subset of edges in the network to connect multiple terminals together with high probability. This problem can be seen as a stochastic variant of the Steiner tree problem. We propose a scenario-based Steiner cut formulation, and a … Read more

Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant … Read more

Decomposition Algorithms for Two-Stage Chance-Constrained Programs

We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve … Read more

Chance-constrained problems and rare events: an importance sampling approach

We study chance-constrained problems in which the constraints involve the probability of a rare event. We discuss the relevance of such problems and show that the existing sampling-based algorithms cannot be applied directly in this case, since they require an impractical number of samples to yield reasonable solutions. Using a Sample Average Approximation (SAA) approach … Read more

Ambiguous Probabilistic Programs

Probabilistic programs are widely used decision models. When implemented in practice, however, there often exists distributional ambiguity in these models. In this paper, we model the ambiguity using the likelihood ratio (LR) and use LR to construct various ambiguity sets. We consider ambiguous probabilistic programs which optimize under the worst case. Ambiguous probabilistic programs can … Read more

REDUCTION OF TWO-STAGE PROBABILISTIC OPTIMIZATION PROBLEMS WITH DISCRETE DISTRIBUTION OF RANDOM DATA TO MIXED INTEGER PROGRAMMING PROBLEMS

We consider models of two-stage stochastic programming with a quantile second stage criterion and optimization models with a chance constraint on the second stage objective function values. Such models allow to formalize requirements to reliability and safety of the system under consideration, and to optimize the system in extreme conditions. We suggest a method of … Read more

On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem

We suggest a method for equivalent transformation of a quantile optimization problem with discrete distribution of random parameters to mixed integer programming problems. The number of additional integer (in fact boolean) variables in the equivalent problems equals to the number of possible scenarios for random data. The obtained mixed integer problems are solved by standard … Read more

Chance-constrained binary packing problems

We consider a class of packing problems with uncertain data, which we refer to as the chance-constrained binary packing problem. In this problem, a subset of items is selected that maximizes the total profit so that a generic packing constraint is satisfied with high probability. Interesting special cases of our problem include chance-constrained knapsack and … Read more