A biased random-key genetic algorithm for the Steiner triple covering problem

We present a biased random-key genetic algorithm (BRKGA) for finding small covers of computationally difficult set covering problems that arise in computing the 1-width of incidence matrices of Steiner triple systems. Using a parallel implementation of the BRKGA, we compute improved covers for the two largest instances in a standard set of test problems used … Read more

Feasible and accurate algorithms for covering semidefinite programs

In this paper we describe an algorithm to approximately solve a class of semidefinite programs called covering semidefinite programs. This class includes many semidefinite programs that arise in the context of developing algorithms for important optimization problems such as sparsest cut, wireless multicasting, and pattern classification. We give algorithms for covering SDPs whose dependence on … Read more

Easy distributions for combinatorial optimization problems with probabilistic constraints

We show how we can linearize probabilistic linear constraints with binary variables when all coefficients are distributed according to either $\mathcal{N}(\mu_i,\lambda \mu_i)$, for some $\lambda >0$ and $\mu_i>0$, or $\Gamma(k_i,\theta)$ for some $\theta >0$ and $k_i>0$. The constraint can also be linearized when the coefficients are independent and identically distributed if they are, besides, either … Read more

Quadratic factorization heuristics for copositive programming

Copositive optimization problems are particular conic programs: extremize linear forms over the copositive cone subject to linear constraints. Every quadratic program with linear constraints can be formulated as a copositive program, even if some of the variables are binary. So this is an NP-hard problem class. While most methods try to approximate the copositive cone … Read more

Exact Solution of Emerging Quadratic Assignment Problems

We report on a growing class of assignment problems that are increasingly of interest and very challenging in terms of the difficulty they pose to attempts at exact solution. These problems address economic issues in the location and design of factories, hospitals, depots, transportation hubs and military bases. Others involve improvements in communication network design. … Read more

Biased random-key genetic algorithms for combinatorial optimization

Random-key genetic algorithms were introduced by Bean (1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

Provably Near-Optimal Solutions for Very Large Single-Row Facility Layout Problems

The facility layout problem is a global optimization problem that seeks to arrange a given number of rectangular facilities so as to minimize the total cost associated with the (known or projected) interactions between them. This paper is concerned with the single-row facility layout problem (SRFLP), the one-dimensional version of facility layout that is also … Read more

Detecting Critical Nodes in Sparse Graphs

Identifying critical nodes in a graph is important to understand the structural characteristics and the connectivity properties of the network. In this paper, we focus on detecting critical nodes, or nodes whose deletion results in the minimum pair-wise connectivity among the remaining nodes. This problem, known as the CRITICAL NODE PROBLEM has applications in several … Read more

The N – k Problem in Power Grids: New Models, Formulations and Computation

Given a power grid modeled by a network together with equations describing the power flows, power generation and consumption, and the laws of physics, the so-called N – k problem asks whether there exists a set of k or fewer arcs whose removal will cause the system to fail. We present theoretical results and computation … Read more