Interior-point method for nonlinear programming with complementarity constraints

In this report, we propose an algorithm for solving nonlinear programming problems with com-plementarity constraints, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We use an exact penalty function to remove complementarity constraints. Thus a new indefinite linear system is defined with a tridiagonal low-right submatrix. Inexact … Read more

Primal interior point method for minimization of generalized minimax functions

In this report, we propose a primal interior-point method for large sparse generalized minimax optimization. After a short introduction, where the problem is stated, we introduce the basic equations of the Newton method applied to the KKT conditions and propose a primal interior-point method. Next we describe the basic algorithm and give more details concerning … Read more

A shifted Steihaug-Toint method for computing a trust-region step.

Trust-region methods are very convenient in connection with the Newton method for unconstrained optimization. The More-Sorensen direct method and the Steihaug-Toint iterative method are most commonly used for solving trust-region subproblems. We propose a method which combines both of these approaches. Using the small-size Lanczos matrix, we apply the More-Sorensen method to a small-size trust-region … Read more