Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction

This article aims to explain the Nested Benders algorithm for the solution of large-scale stochastic programming problems in a way that is intelligible to someone coming to it for the first time. In doing so it gives an explanation of Benders decomposition and of its application to two-stage stochastic programming problems (also known in this … Read more

An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization

We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the … Read more

Superiorization: An optimization heuristic for medical physics

Purpose: To describe and mathematically validate the superiorization methodology, which is a recently-developed heuristic approach to optimization, and to discuss its applicability to medical physics problem formulations that specify the desired solution (of physically given or otherwise obtained constraints) by an optimization criterion. Methods: The superiorization methodology is presented as a heuristic solver for a … Read more

Zero duality gap for convex programs: a general result

This article addresses a general criterion providing a zero duality gap for convex programs in the setting of the real locally convex spaces. The main theorem of our work is formulated only in terms of the constraints of the program, hence it holds true for any objective function fulfilling a very general qualification condition, implied … Read more

An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

We propose a new subgradient method for the minimization of convex functions over a convex set. Common subgradient algorithms require an exact projection onto the feasible region in every iteration, which can be efficient only for problems that admit a fast projection. In our method we use inexact adaptive projections requiring to move within a … Read more

An Implementation of an Algorithm for Nonlinear Programming Based on Piecewise Linear Models

This is a progress report on an implementation of the active-set method for nonlinear programming proposed in [6] that employs piecewise linear models in the active-set prediction phase. The motivation for this work is to develop an algorithm that is capable of solving large-scale problems, including those with a large reduced space. Unlike SQP methods, … Read more

Use of quadratic models with mesh adaptive direct search for constrained black box optimization

We consider a derivative-free optimization, and in particular black box optimization, where the functions to be minimized and the functions representing the constraints are given by black boxes without derivatives. Two fundamental families of methods are available: model-based methods and directional direct search algorithms. This work exploits the flexibility of the second type of methods … Read more

An Iterative algorithm for large size Least-Squares constrained regularization problems.

In this paper we propose an iterative algorithm to solve large size linear inverse ill posed problems. The regularization problem is formulated as a constrained optimization problem. The dual lagrangian problem is iteratively solved to compute an approximate solution. Before starting the iterations, the algorithm computes the necessary smoothing parameters and the error tolerances from … Read more

A Penalty-Interior-Point Algorithm for Nonlinear Constrained Optimization

Penalty and interior-point methods for nonlinear optimization problems have enjoyed great successes for decades. Penalty methods have proved to be effective for a variety of problem classes due to their regularization effects on the constraints. They have also been shown to allow for rapid infeasibility detection. Interior-point methods have become the workhorse in large-scale optimization … Read more

Local path-following property of inexact interior methods in nonlinear programming

We study the local behavior of a primal-dual inexact interior point methods for solving nonlinear systems arising from the solution of nonlinear optimization problems or more generally from nonlinear complementarity problems. The algorithm is based on the Newton method applied to a sequence of perturbed systems that follows by perturbation of the complementarity equations of … Read more