Non-smooth Non-convex Bregman Minimization: Unification and new Algorithms

We propose a unifying algorithm for non-smooth non-convex optimization. The algorithm approximates the objective function by a convex model function and finds an approximate (Bregman) proximal point of the convex model. This approximate minimizer of the model function yields a descent direction, along which the next iterate is found. Complemented with an Armijo-like line search … Read more

A Novel Approach for Solving Convex Problems with Cardinality Constraints

In this paper we consider the problem of minimizing a convex differentiable function subject to sparsity constraints. Such constraints are non-convex and the resulting optimization problem is known to be hard to solve. We propose a novel generalization of this problem and demonstrate that it is equivalent to the original sparsity-constrained problem if a certain … Read more

Convergence Study on the Proximal Alternating Direction Method with Larger Step Size

The alternating direction method of multipliers (ADMM) is a popular method for the separable convex programming with linear constraints, and the proximal ADMM is its important variant. Previous studies show that the relaxation factor $\gamma\in (0, \frac{1+\sqrt{5}}{2})$ by Fortin and Glowinski for the ADMM is also valid for the proximal ADMM. In this paper, we … Read more

On the Convergence of Asynchronous Parallel Iteration with Arbitrary Delays

Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outdated information, and the age of the outdated information, which we call \emph{delay}, is the number of times it has been … Read more

A general double-proximal gradient algorithm for d.c. programming

The possibilities of exploiting the special structure of d.c. programs, which consist of optimizing the difference of convex functions, are currently more or less limited to variants of the DCA proposed by Pham Dinh Tao and Le Thi Hoai An in 1997. These assume that either the convex or the concave part, or both, are … Read more

Improving an ADMM-like Splitting Method via Positive-Indefinite Proximal Regularization for Three-Block Separable Convex Minimization

The augmented Lagrangian method (ALM) is fundamental for solving convex minimization models with linear constraints. When the objective function is separable such that it can be represented as the sum of more than one function without coupled variables, various splitting versions of the ALM have been well studied in the literature such as the alternating … Read more

The direct extension of ADMM for three-block separable convex minimization models is convergent when one function is strongly convex

The alternating direction method of multipliers (ADMM) is a benchmark for solving a two-block linearly constrained convex minimization model whose objective function is the sum of two functions without coupled variables. Meanwhile, it is known that the convergence is not guaranteed if the ADMM is directly extended to a multiple-block convex minimization model whose objective … Read more

An efficient dimer method with preconditioning and linesearch

The dimer method is a Hessian-free algorithm for computing saddle points. We augment the method with a linesearch mechanism for automatic step size selection as well as preconditioning capabilities. We prove local linear convergence. A series of numerical tests demonstrate significant performance gains. Citationhttp://arxiv.org/abs/1407.2817ArticleDownload View PDF

Linear equalities in blackbox optimization

The Mesh Adaptive Direct Search (Mads) algorithm is designed for blackbox optimization problems subject to general inequality constraints. Currently, Mads does not support equalities, neither in theory nor in practice. The present work proposes extensions to treat problems with linear equalities whose expression is known. The main idea consists in reformulating the optimization problem into … Read more

The Direct Extension of ADMM for Multi-block Convex Minimization Problems is Not Necessarily Convergent

The alternating direction method of multipliers (ADMM) is now widely used in many fields, and its convergence was proved when two blocks of variables are alternatively updated. It is strongly desirable and practically valuable to extend ADMM directly to the case of a multi-block convex minimization problem where its objective function is the sum of … Read more