On the exact separation of rank inequalities for the maximum stable set problem

When addressing the maximum stable set problem on a graph G = (V,E), rank inequalities prescribe that, for any subgraph G[U] induced by U ⊆ V , at most as many vertices as the stability number of G[U] can be part of a stable set of G. These inequalities are very general, as many of … Read more

Branch-and-bound for bi-objective integer programming

In Pareto bi-objective integer optimization the optimal result corresponds to a set of non- dominated solutions. We propose a generic bi-objective branch-and-bound algorithm that uses a problem-independent branching rule exploiting available integer solutions, and cutting plane generation taking advantage of integer objective values. The developed algorithm is applied to the bi-objective team orienteering problem with … Read more

n-step cycle inequalities: facets for continuous n-mixing set and strong cuts for multi-module capacitated lot-sizing problem

In this paper, we introduce a generalization of the continuous mixing set (which we refer to as the continuous n-mixing set). This set is closely related to the feasible set of the multi-module capacitated lot-sizing (MML) problem with(out) backlogging. We develop new classes of valid inequalities for this set, referred to as n’-step cycle inequalities, … Read more

Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem is a much-studied (and strongly NP-hard) combinatorial optimization problem, for which many integer programming formulations have been proposed. We present some new multi-commodity flow (MCF) formulations, and show that they dominate all of the existing ones, in the sense that their continuous relaxations yield stronger lower bounds. Moreover, we show … Read more

Disjunctive Cuts for Cross-Sections of the Second-Order Cone

In this paper we provide a unified treatment of general two-term disjunctions on cross-sections of the second-order cone. We derive a closed-form expression for a convex inequality that is valid for such a disjunctive set and show that this inequality is sufficient to characterize the closed convex hull of all two-term disjunctions on ellipsoids and … Read more

How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more

Two-Term Disjunctions on the Second-Order Cone

Balas introduced disjunctive cuts in the 1970s for mixed-integer linear programs. Several recent papers have attempted to extend this work to mixed-integer conic programs. In this paper we study the structure of the convex hull of a two-term disjunction applied to the second-order cone, and develop a methodology to derive closed-form expressions for convex inequalities … Read more

Decomposition Algorithms for Two-Stage Chance-Constrained Programs

We study a class of chance-constrained two-stage stochastic optimization problems where second-stage feasible recourse decisions incur additional cost. In addition, we propose a new model, where “recovery” decisions are made for the infeasible scenarios to obtain feasible solutions to a relaxed second-stage problem. We develop decomposition algorithms with specialized optimality and feasibility cuts to solve … Read more

Cutting Planes for RLT Relaxations of Mixed 0-1 Polynomial Programs

The Reformulation-Linearization Technique (RLT), due to Sherali and Adams, can be used to construct hierarchies of linear programming relaxations of mixed 0-1 polynomial programs. As one moves up the hierarchy, the relaxations grow stronger, but the number of variables increases exponentially. We present a procedure that generates cutting planes at any given level of the … Read more

Benders, Nested Benders and Stochastic Programming: An Intuitive Introduction

This article aims to explain the Nested Benders algorithm for the solution of large-scale stochastic programming problems in a way that is intelligible to someone coming to it for the first time. In doing so it gives an explanation of Benders decomposition and of its application to two-stage stochastic programming problems (also known in this … Read more