Incorporating Minimum Frobenius Norm Models in Direct Search

The goal of this paper is to show that the use of minimum Frobenius norm quadratic models can improve the performance of direct-search methods. The approach taken here is to maintain the structure of directional direct-search methods, organized around a search and a poll step, and to use the set of previously evaluated points generated … Read more

PSwarm: A Hybrid Solver for Linearly Constrained Global Derivative-Free Optimization

PSwarm was developed originally for the global optimization of functions without derivatives and where the variables are within upper and lower bounds. The underlying algorithm used is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the (optional) search step of coordinate search, … Read more

Implicitely and Densely Discrete Black-Box Optimization Problems

This paper addresses derivative-free optimization problems where the variables lie implicitly in an unknown discrete closed set. The evaluation of the objective function follows a projection onto the discrete set, which is assumed dense rather than sparse. Such a mathematical setting is a rough representation of what is common in many real-life applications where, despite … Read more

ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions

We present a new derivative-free algorithm, ORBIT, for unconstrained local optimization of computationally expensive functions. A trust-region framework using interpolating Radial Basis Function (RBF) models is employed. The RBF models considered often allow ORBIT to interpolate nonlinear functions using fewer function evaluations than the polynomial models considered by present techniques. Approximation guarantees are obtained by … Read more

On the Geometry Phase in Model-Based Algorithms for Derivative-Free Optimization

A numerical study of model-based methods for derivative-free optimization is presented. These methods typically include a geometry phase whose goal is to ensure the adequacy of the interpolation set. The paper studies the performance of an algorithm that dispenses with the geometry phase altogether (and therefore does not attempt to control the position of the … Read more

Benchmarking Derivative-Free Optimization Algorithms

We propose data profiles as a tool for analyzing the performance of derivative-free optimization solvers when there are constraints on the computational budget. We use performance and data profiles, together with a convergence test that measures the decrease in function value, to analyze the performance of three solvers on sets of smooth, noisy, and piecewise-smooth … Read more

Derivative Free Optimization Methods for Optimizing Stirrer Configurations

In this paper a numerical approach for the optimization of stirrer configurations is presented. The methodology is based on a flow solver, and a mathematical optimization tool, which are integrated into an automated procedure. The flow solver is based on the discretization of the incompressible Navier-Stokes equations by means of a fully conservative finite-volume method … Read more

Survey of Derivative Free Optimization Methods based on Interpolation

In this survey article we give the basic description of the interpolation based derivative free optimization methods and their variants. We review the recent contributions dealing with the maintaining the geometry of the interpolation set, the management of the trust region radius and the stopping criteria. Derivative free algorithms developed for problems with some structure … Read more

Using Simplex Gradients of Nonsmooth Functions in Direct Search Methods

It has been shown recently that the efficiency of direct search methods that use opportunistic polling in positive spanning directions can be improved significantly by reordering the poll directions according to descent indicators built from simplex gradients. The purpose of this paper is twofold. First, we analyze the properties of simplex gradients of nonsmooth functions … Read more

Global Convergence of General Derivative-Free Trust-Region Algorithms to First and Second Order Critical Points

In this paper we prove global convergence for first and second-order stationarity points of a class of derivative-free trust-region methods for unconstrained optimization. These methods are based on the sequential minimization of linear or quadratic models built from evaluating the objective function at sample sets. The derivative-free models are required to satisfy Taylor-type bounds but, … Read more