Connectivity via convexity: Bounds on the edge expansion in graphs

Convexification techniques have gained increasing interest over the past decades. In this work, we apply a recently developed convexification technique for fractional programs by He, Liu and Tawarmalani (2024) to the problem of determining the edge expansion of a graph. Computing the edge expansion of a graph is a well-known, difficult combinatorial problem that seeks … Read more

Tighter yet more tractable relaxations and nontrivial instance generation for sparse standard quadratic optimization

The Standard Quadratic optimization Problem (StQP), arguably the simplest among all classes of NP-hard optimization problems, consists of extremizing a quadratic form (the simplest nonlinear polynomial) over the standard simplex (the simplest polytope/compact feasible set). As a problem class, StQPs may be nonconvex with an exponential number of inefficient local solutions. StQPs arise in a … Read more

A Restricted Dual Peaceman-Rachford Splitting Method for QAP

We revisit and strengthen splitting methods for solving doubly nonnegative, DNN, relaxations of the quadratic assignment problem, QAP. We use a modified restricted contractive splitting method, rPRSM, approach. Our strengthened bounds and new dual multiplier estimates improve on the bounds and convergence results in the literature. CitationDepartment of Combinatorics & Optimization, University of Waterloo, Canada,06/2019ArticleDownload … Read more

An Alternative Perspective on Copositive and Convex Relaxations of Nonconvex Quadratic Programs

We study convex relaxations of nonconvex quadratic programs. We identify a family of so-called feasibility preserving convex relaxations, which includes the well-known copositive and doubly nonnegative relaxations, with the property that the convex relaxation is feasible if and only if the nonconvex quadratic program is feasible. We observe that each convex relaxation in this family … Read more

On Standard Quadratic Programs with Exact and Inexact Doubly Nonnegative Relaxations

The problem of minimizing a (nonconvex) quadratic form over the unit simplex, referred to as a standard quadratic program, admits an exact convex conic formulation over the computationally intractable cone of completely positive matrices. Replacing the intractable cone in this formulation by the larger but tractable cone of doubly nonnegative matrices, i.e., the cone of … Read more

A Strictly Contractive Peaceman-Rachford Splitting Method for the Doubly Nonnegative Relaxation of the Minimum Cut Problem

The minimum cut problem, MC, and the special case of the vertex separator problem, consists in partitioning the set of nodes of a graph G into k subsets of given sizes in order to minimize the number of edges cut after removing the k-th set. Previous work on this topic uses eigenvalue, semidefinite programming, SDP, … Read more

User Manual for BBCPOP: A Sparse Doubly Nonnegative Relaxation of Polynomial Optimization Problems with Binary, Box and Complementarity Constraints

BBCPOP proposed in [4] is a MATLAB implementation of a hierarchy of sparse doubly nonnegative (DNN) relaxations of a class of polynomial optimization (minimization) problems (POPs) with binary, box and complementarity constraints. Given a POP in the class and a relaxation order (or a hierarchy level), BBCPOP constructs a simple conic optimization problem (COP), which … Read more

A doubly nonnegative relaxation for modularity density maximization

Modularity proposed by Newman and Girvan is the most commonly used measure when the nodes of a graph are grouped into communities consisting of tightly connected nodes. However, some authors pointed out drawbacks of the modularity, the main issue of which is resolution limit. Resolution limit refers to the sensitivity of the modularity to the … Read more

Lagrangian-Conic Relaxations, Part I: A Unified Framework and Its Applications to Quadratic Optimization Problems

In Part I of a series of study on Lagrangian-conic relaxations, we introduce a unified framework for conic and Lagrangian-conic relaxations of quadratic optimization problems (QOPs) and polynomial optimization problems (POPs). The framework is constructed with a linear conic optimization problem (COP) in a finite dimensional vector space endowed with an inner product, where the … Read more

Burer’s Key Assumption for Semidefinite and Doubly Nonnegative Relaxations

Burer has shown that completely positive relaxations of nonconvex quadratic programs with nonnegative and binary variables are exact when the binary variables satisfy a so-called key assumption. Here we show that introducing binary variables to obtain an equivalent problem that satisfies the key assumption will not improve the semidefinite relaxation, and only marginally improve the … Read more