A One-Extra Player Reduction of GNEPs to NEPs

It is common opinion that generalized Nash equilibrium problems are harder than Nash equilibrium problems. In this work, we show that by adding a new player, it is possible to reduce many generalized problems to standard equilibrium problems. The reduction holds for linear problems and smooth convex problems verifying a Slater-type condition. We also derive … Read more

Branch-and-Cut for Computing Approximate Equilibria of Mixed-Integer Generalized Nash Games

Generalized Nash equilibrium problems with mixed-integer variables constitute an important class of games in which each player solves a mixed-integer optimization problem, where both the objective and the feasible set is parameterized by the rivals’ strategies. However, such games are known for failing to admit exact equilibria and also the assumption of all players being … Read more

Branch-and-Cut for Mixed-Integer Generalized Nash Equilibrium Problems

Generalized Nash equilibrium problems with mixed-integer variables form an important class of games in which each player solves a mixed-integer optimization problem with respect to her own variables and the strategy space of each player depends on the strategies chosen by the rival players. In this work, we introduce a branch-and-cut algorithm to compute exact … Read more

Stabilizing GNEP-Based Model Predictive Control: Quasi-GNEPs and End Constraints

We present a feedback scheme for non-cooperative dynamic games and investigate its stabilizing properties. The dynamic games are modeled as generalized Nash equilibrium problems (GNEP) in which the shared constraint consists of linear time-discrete dynamic equations (e.g., sampled from a partial or ordinary differential equation), which are jointly controlled by the players’ actions. Further, the … Read more

Optimality Conditions and Constraint Qualifications for Generalized Nash Equilibrium Problems and their Practical Implications

Generalized Nash Equilibrium Problems (GNEPs) are a generalization of the classic Nash Equilibrium Problems (NEPs), where each player’s strategy set depends on the choices of the other players. In this work we study constraint qualifications and optimality conditions tailored for GNEPs and we discuss their relations and implications for global convergence of algorithms. Surprisingly, differently … Read more