Fenchel Decomposition for Stochastic Mixed-Integer Programming

This paper introduces a new cutting plane method for two-stage stochastic mixed-integer programming (SMIP) called Fenchel decomposition (FD). FD uses a class of valid inequalities termed, FD cuts, which are derived based on Fenchel cutting planes from integer programming. First, we derive FD cuts based on both the first and second-stage variables, and devise an … Read more

Clique-based facets for the precedence constrained knapsack problem

We consider a knapsack problem with precedence constraints imposed on pairs of items, known as the precedence constrained knapsack problem (PCKP). This problem has applications in manufacturing and mining, and also appears as a subproblem in decomposition techniques for network design and related problems. We present a new approach for determining facets of the PCKP … Read more

Solving Large Steiner Triple Covering Problems

Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to small set covering instances that provide a computational challenge for integer programming techniques. One major source of difficulty for instances of this family is their highly symmetric structure, which impairs the performance of most branch-and-bound algorithms. The largest instance in … Read more

A new LP algorithm for precedence constrained production scheduling

We present a number of new algorithmic ideas for solving LP relaxations of extremely large precedence constrained production scheduling problems. These ideas are used to develop an implementation that is tested on a variety of real-life, large scale instances; yielding optimal solutions in very practicable CPU time. CitationUnpublished. Columbia University, BHP Billiton, August 2009.ArticleDownload View … Read more

Basis Reduction, and the Complexity of Branch-and-Bound

The classical branch-and-bound algorithm for the integer feasibility problem has exponential worst case complexity. We prove that it is surprisingly efficient on reformulations, in which the columns of the constraint matrix are short, and near orthogonal, i.e. a reduced basis of the generated lattice; when the entries of A (i.e. the dense part of the … Read more

Eigenvalue techniques for proving bounds for convex objective, nonconvex programs

We describe techniques combining the S-lemma and computation of projected quadratics which experimentally yield strong bounds on the value of convex quadratic programs with nonconvex constraints Citationunpublished report, Columbia University, March 2009ArticleDownload View PDF

Optimal Security Response to Attacks on Open Science Grids

Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased … Read more

The master equality polyhedron with multiple rows

The master equality polyhedron (MEP) is a canonical set that generalizes the Master Cyclic Group Polyhedron (MCGP) of Gomory. We recently characterized a nontrivial polar for the MEP, i.e., a polyhedron T such that an inequality denotes a nontrivial facet of the MEP if and only if its coefficient vector forms a vertex of T. … Read more

The Integer Approximation Error in Mixed-Integer Optimal Control

We extend recent work on nonlinear optimal control problems with integer restrictions on some of the control functions (mixed-integer optimal control problems, MIOCP) in two ways. We improve a theorem that states that the solution of a relaxed and convexified problem can be approximated with arbitrary precision by a solution fulfilling the integer requirements. Unlike … Read more

Reformulations and Algorithms for the Optimization of Switching Decisions in Nonlinear Optimal Control

In model-based nonlinear optimal control switching decisions that can be optimized often play an important role. Prominent examples of such hybrid systems are gear switches for transport vehicles or valves in chemical engineering. Optimization algorithms need to take the discrete nature of the variables that model these switching decisions into account. Unnecessarily, for many applications … Read more