Optimized choice of parameters in interior-point methods for linear programming

In this work, we propose a predictor-corrector interior point method for linear programming in a primal-dual context, where the next iterate is chosen by the minimization of a polynomial merit function of three variables: the first is the steplength, the second defines the central path and the third models the weight of a corrector direction. … Read more

Can linear superiorization be useful for linear optimization problems?

Linear superiorization considers linear programming problems but instead of attempting to solve them with linear optimization methods it employs perturbation resilient feasibility-seeking algorithms and steers them toward reduced (not necessarily minimal) target function values. The two questions that we set out to explore experimentally are (i) Does linear superiorization provide a feasible point whose linear … Read more

A generalized simplex method for integer problems given by verification oracles

We consider a linear problem over a finite set of integer vectors and assume that there is a verification oracle, which is an algorithm being able to verify whether a given vector optimizes a given linear function over the feasible set. Given an initial solution, the algorithm proposed in this paper finds an optimal solution … Read more

1-Bit Compressive Sensing: Reformulation and RRSP-Based Sign Recovery Theory

Recently, the 1-bit compressive sensing (1-bit CS) has been studied in the field of sparse signal recovery. Since the amplitude information of sparse signals in 1-bit CS is not available, it is often the support or the sign of a signal that can be exactly recovered with a decoding method. In this paper, we first … Read more

Tight global linear convergence rate bounds for operator splitting methods

In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding … Read more

LP-based Tractable Subcones of the Semidefinite Plus Nonnegative Cone

The authors in a previous paper devised certain subcones of the semidefinite plus nonnegative cone and showed that satisfaction of the requirements for membership of those subcones can be detected by solving linear optimization problems (LPs) with $O(n)$ variables and $O(n^2)$ constraints. They also devised LP-based algorithms for testing copositivity using the subcones. In this … Read more

Strong Duality: Without Simplex and without theorems of alternatives

The simplex method has its own problems related to degenerate basic feasible solutions. While such solutions are infrequent, from a theoretical standpoint a proof of the strong duality theorem that uses the simplex method is not complete until it has taken a few extra steps. Further, for economists the duality theorem is extremely important whereas … Read more

Closing the gap in pivot methods for linear programming

We propose pivot methods that solve linear programs by trying to close the duality gap from both ends. The first method maintains a set $\B$ of at most three bases, each of a different type, in each iteration: a primal feasible basis $B^p$, a dual feasible basis $B^d$ and a primal-and-dual infeasible basis $B^i$. From … Read more

Alternating Direction Method of Multipliers for Linear Programming

Recently the alternating direction method of multipliers (ADMM) has been widely used for various applications arising in scientific computing areas. Most of these application models are, or can be easily reformulated as, linearly constrained convex minimization models with separable nonlinear objective functions. In this note we show that ADMM can also be easily used for … Read more

Iterative Refinement for Linear Programming

We describe an iterative refinement procedure for computing extended precision or exact solutions to linear programming problems (LPs). Arbitrarily precise solutions can be computed by solving a sequence of closely related LPs with limited precision arithmetic. The LPs solved share the same constraint matrix as the original problem instance and are transformed only by modification … Read more