New error measures and methods for realizing protein graphs from distance data

The interval Distance Geometry Problem (iDGP) consists in finding a realization in R^K of a simple undirected graph G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. Our aim is to determine … Read more

Exactly solving packing problems with fragmentation

In packing problems with fragmentation a set of items of known weight is given, together with a set of bins of limited capacity; the task is to find an assignment of items to bins such that the sum of items assigned to the same bin does not exceed its capacity. As a distinctive feature, items … Read more

Partial Relaxation of Equality-constrained Programs

This paper presents a reformulation that is a natural “by-product” of the ‘variable endogenization’ process for equality-constrained programs. The method results a partial relaxation of the constraints which in turn confers some computational advantages. A fully-annotated example illustrates the technique and presents some comparative numerical results. CitationSiwale, I.: Partial Relaxation of Equality-constrained Programs. Technical Report … Read more

An Overview on Mathematical Programming Approaches for the Deterministic Unit Commitment Problem in Hydro Valleys

With the fast-growing demand in the electricity market of the last decades, attention has been focused on alternative and flexible sources of energy such as hydro valleys. Managing the hydroelectricity produced by the plants in hydro valleys is called the hydro unit commitment problem. This problem consists in finding the optimal power production schedule of … Read more

Transmission Expansion Planning Using an AC Model: Formulations and Possible Relaxations

Transmission expansion planning (TEP) is a rather complicated process which requires extensive studies to determine when, where and how many transmission facilities are needed. A well planned power system will not only enhance the system reliability, but also tend to contribute positively to the overall system operating efficiency. Starting with two mixed-integer nonlinear programming (MINLP) … Read more

Orbital shrinking

Symmetry plays an important role in optimization. The usual approach to cope with symmetry in discrete optimization is to try to eliminate it by introducing artificial symmetry-breaking conditions into the problem, and/or by using an ad-hoc search strategy. In this paper we argue that symmetry is instead a beneficial feature that we should preserve and … Read more

A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming

We present a structure-conveying algebraic modelling language for mathematical programming. The proposed language extends AMPL with object-oriented features that allows the user to onstruct models from sub-models, and is implemented as a combination of pre- and post-processing phases for AMPL. Unlike traditional modelling languages, the new approach does not scramble the block structure of the … Read more

Explicit reformulations for robust optimization problems with general uncertainty sets

We consider a rather general class of mathematical programming problems with data uncertainty, where the uncertainty set is represented by a system of convex inequalities. We prove that the robust counterparts of this class of problems can be equivalently reformulated as finite and explicit optimization problems. Moreover, we develop simplified reformulations for problems with uncertainty … Read more

A Penalized Trimmed Squares Method for Deleting Outliers in Robust Regression

We consider the problem of identifying multiple outliers in linear regression models. In robust regression the unusual observations should be removed from the sample in order to obtain better fitting for the rest of the observations. Based on the LTS estimate, we propose a penalized trimmed square estimator PTS, where penalty costs for discarding outliers … Read more

Topology optimization of a mechanical component subject to dynamical constraints

This paper is concerned with the optimization of continuum structures under dynamic loading using methods from topology design. The constraint functions are non-linear and implicit, their evaluation requires the resolution of a computation-intensive finite-element analysis performed by a black-box commercial structural mechanics software such as MSC/Nastran. We first present a brief overview of topology optimization … Read more