Polynomial-Time Algorithms for Setting Tight Big-M Coefficients in Transmission Expansion Planning with Disconnected Buses

The increasing penetration of renewable energy into power systems necessitates the development of effective methodologies to integrate initially disconnected generation sources into the grid. This paper introduces the Longest Shortest-Path-Connection (LSPC) algorithm, a graph-based method to enhance the mixed-integer linear programming disjunctive formulation of Transmission Expansion Planning (TEP) using valid inequalities (VIs). Traditional approaches for … Read more

Cut-based Conflict Analysis in Mixed Integer Programming

For almost two decades, mixed integer programming (MIP) solvers have used graph- based conflict analysis to learn from local infeasibilities during branch-and-bound search. In this paper, we improve MIP conflict analysis by instead using reasoning based on cuts, inspired by the development of conflict-driven solvers for pseudo- Boolean optimization. Phrased in MIP terminology, this type … Read more

On the accurate detection of the Pareto frontier for bi-objective mixed integer linear problems

We propose a criterion space search algorithm for bi-objective mixed integer linear programming problems. The Pareto frontier of these problems can have a complex structure, as it can include isolated points, open, half-open and closed line segments. Therefore, its exact detection is an achievable though hard computational task. Our algorithm works by alternating the resolution … Read more

The MIP Workshop 2023 Computational Competition on Reoptimization

This paper describes the computational challenge developed for a computational competition held in 2023 for the 20th anniversary of the Mixed Integer Programming Workshop. The topic of this competition was reoptimization, also known as warm starting, of mixed integer linear optimization problems after slight changes to the input data for a common formulation. The challenge … Read more

Cross-Dock Trailer Scheduling with Workforce Constraints: A Dynamic Discretization Discovery Approach

LTL freight carriers operate consolidation networks that utilize cross-docking terminals to facilitate thetransfer of freight between trailers and enhance trailer utilization. This research addresses the problem ofdetermining an optimal schedule for unloading inbound trailers at specific unloading doors using teams ofdock workers. The optimization objective is chosen to ensure that outbound trailers are loaded with … Read more

Strategy Investments in Matrix Games

We propose an extension of matrix games where the row player may select rows and remove columns, subject to a budget constraint. We present an exact mixed-integer linear programming (MILP) formulation for the problem, provide analytical results concerning its solution, and discuss applications in the security domain. Our computational experiments show heuristic approaches on average … Read more

Optimization and Simulation for the Daily Operation of Renewable Energy Communities

Renewable Energy Communities (RECs) are an important building block for the decarbonization of the energy sector. The concept of RECs allows individual consumers to join together in local communities to generate, store, consume and sell renewable energy. A major benefit of this collective approach is a better match between supply and demand profiles, and thus, … Read more

Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks

CitationOjha, R., Chen, W., Zhang, H., Khir, R., Erera, A. & Van Hentenryck, P. (2023). Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks.ArticleDownload View PDF

Monoidal Strengthening of Simple V-Polyhedral Disjunctive Cuts

Disjunctive cutting planes can tighten a relaxation of a mixed-integer linear program. Traditionally, such cuts are obtained by solving a higher-dimensional linear program, whose additional variables cause the procedure to be computationally prohibitive. Adopting a V-polyhedral perspective is a practical alternative that enables the separation of disjunctive cuts via a linear program with only as … Read more

V-polyhedral disjunctive cuts

We introduce V-polyhedral disjunctive cuts (VPCs) for generating valid inequalities from general disjunctions. Cuts are critical to integer programming solvers, but the benefit from many families is only realized when the cuts are applied recursively, causing numerical instability and “tailing off” of cut strength after several rounds. To mitigate these difficulties, the VPC framework offers … Read more