On the relative strength of families of intersection cuts arising from pairs of tableau constraints in mixed integer programs

We compare the relative strength of valid inequalities for the integer hull of the feasible region of mixed integer linear programs with two equality constraints, two unrestricted integer variables and any number of nonnegative continuous variables. In particular, we prove that the closure of Type~2 triangle (resp. Type~3 triangle; quadrilateral) inequalities, are all within a … Read more

On the Augmented Lagrangian Dual for Integer Programming

We consider the augmented Lagrangian dual for integer programming, and provide a primal characterization of the resulting bound. As a corollary, we obtain proof that the augmented Lagrangian is a strong dual for integer programming. We are able to show that the penalty parameter applied to the augmented Lagrangian term may be placed at a … Read more

Branch-and-Cut for Complementarity-Constrained Optimization

We report and analyze the results of our computational testing of branch-and-cut for the complementarity-constrained optimization problem (CCOP). Besides the MIP cuts commonly present in commercial optimization software, we used inequalities that explore complementarity constraints. To do so, we generalized two families of cuts proposed earlier by de Farias, Johnson, and Nemhauser that had never … Read more

Efficient Heuristic Algorithms for Maximum Utility Product Pricing Problems

We propose improvements to some of the best heuristic algorithms for optimal product pricing problem originally designed by Dobson and Kalish in the late 1980’s and in the early 1990’s. Our improvements are based on a detailed study of a fundamental decoupling structure of the underlying mixed integer programming (MIP) problem and on incorporating more … Read more

On parallelizing dual decomposition in stochastic integer programming

For stochastic mixed-integer programs, we revisit the dual decomposition algorithm of Car\o{}e and Schultz from a computational perspective with the aim of its parallelization. We address an important bottleneck of parallel execution by identifying a formulation that permits the parallel solution of the \textit{master} program by using structure-exploiting interior-point solvers. Our results demonstrate the potential … Read more

Semi-continuous network flow problems

We consider semi-continuous network flow problems, that is, a class of network flow problems where some of the variables are restricted to be semi-continuous. We introduce the semi-continuous inflow set with variable upper bounds as a relaxation of general semi-continuous network flow problems. Two particular cases of this set are considered, for which we present … Read more

On t-branch split cuts for mixed-integer programs

In this paper we study the t-branch split cuts introduced by Li and Richard (2008). They presented a family of mixed-integer programs with n integer variables and a single continuous variable and conjectured that the convex hull of integer solutions for any n has unbounded rank with respect to (n-1)-branch split cuts. It was shown … Read more

The Triangle Closure is a Polyhedron

Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, … Read more

Mixed n-Step MIR Inequalities: Facets for the n-Mixing Set

Gunluk and Pochet [O. Gunluk, Y. Pochet: Mixing mixed integer inequalities. Mathematical Programming 90(2001) 429-457] proposed a procedure to mix mixed integer rounding (MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set $\{(y^1,\ldots,y^m,v) \in Z^m \times R_+:\alpha_1 y^i + v \geq \b_i,i=1,\ldots,m\}$ and can also be used to generate valid … Read more

Lattice-free sets, multi-branch split disjunctions, and mixed-integer programming

In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and the multi-branch split cuts introduced by Li and Richard (2008). By analyzing $n$-dimensional lattice-free sets, we prove that for every integer $n$ there exists a positive integer $t$ such that every facet-defining inequality of the … Read more