Representation of the Pareto front for heterogeneous multi-objective optimization

Optimization problems with multiple objectives which are expensive, i.e. where function evaluations are time consuming, are difficult to solve. Finding at least one locally optimal solution is already a difficult task. In case only one of the objective functions is expensive while the others are cheap, for instance analytically given, this can be used in … Read more

The stochastic multi-gradient algorithm for multi-objective optimization and its application to supervised machine learning

Optimization of conflicting functions is of paramount importance in decision making, and real world applications frequently involve data that is uncertain or unknown, resulting in multi-objective optimization (MOO) problems of stochastic type. We study the stochastic multi-gradient (SMG) method, seen as an extension of the classical stochastic gradient method for single-objective optimization. At each iteration … Read more

Multi-objective optimization models for many-to-one matching problems

This paper is concerned with many-to-one matching problems for assigning residents to hospitals according to their preferences. The stable matching model aims at finding a stable matching, and the assignment game model involves maximizing the total utility; however, these two objectives are incompatible in general. We also focus on a situation where there are predetermined … Read more

Learning to Project in Multi-Objective Binary Linear Programming

In this paper, we investigate the possibility of improving the performance of multi-objective optimization solution approaches using machine learning techniques. Specifically, we focus on multi-objective binary linear programs and employ one of the most effective and recently developed criterion space search algorithms, the so-called KSA, during our study. This algorithm computes all nondominated points of … Read more

Hybrid Rebalancing with Dynamic Hubbing for Free-floating Bike Sharing Using Multi-objective Simulation Optimization

For rebalancing problem of free-floating bike sharing systems, we propose dynamic hubbing (i.e. dynamically determining geofencing areas) and hybrid rebalancing (combining user-based and operator-based strategies) and solve the problem with a novel multi-objective simulation optimization approach. Given historical usage data and real-time bike GPS location information, dynamic geofenced areas (hubs) are determined to encourage users … Read more

Numerical Results for the Multi-objective Trust Region Algorithm MHT

A set of 78 test examples is presented for the trust region method MHT described in J. Thomann, G. Eichfelder, A trust region algorithm for heterogeneous multi-objective optimization, 2018 (available as preprint: http://optimization-online.org/DB_HTML/2018/03/6495.html) . It is designed for multi-objective heterogeneous optimization problems where one of the objective functions is an expensive black-box function, for example … Read more

Best subset selection of factors affecting influenza spread using bi-objective optimization

A typical approach for computing an optimal strategy for non-pharmaceutical interventions during an influenza outbreak is based on statistical ANOVA. In this study, for the first time, we propose to use bi-objective mixed integer linear programming. Our approach employs an existing agent-based simulation model and statistical design of experiments presented in Martinez and Das (2014) … Read more

On generalized-convex constrained multi-objective optimization

In this paper, we consider multi-objective optimization problems involving not necessarily convex constraints and componentwise generalized-convex (e.g., semi-strictly quasi-convex, quasi-convex, or explicitly quasi-convex) vector-valued objective functions that are acting between a real linear topological pre-image space and a finite dimensional image space. For these multi-objective optimization problems, we show that the set of (strictly, weakly) … Read more

On cone based decompositions of proper Pareto optimality

In recent years, the research focus in multi-objective optimization has shifted from approximating the Pareto optimal front in its entirety to identifying solutions that are well-balanced among their objectives. Proper Pareto optimality is an established concept for eliminating Pareto optimal solutions that exhibit unbounded tradeo ffs. Imposing a strict tradeo ff bound allows specifying how many units … Read more

A Fair, Sequential Multiple Objective Optimization Algorithm

In multi-objective optimization the objective is to reach a point which is Pareto ecient. However we usually encounter many such points and choosing a point amongst them possesses another problem. In many applications we are required to choose a point having a good spread over all objective functions which is a direct consequence of the … Read more