Nonlinear optimization for matroid intersection and extensions

We address optimization of nonlinear functions of the form $f(Wx)$~, where $f:\R^d\rightarrow \R$ is a nonlinear function, $W$ is a $d\times n$ matrix, and feasible $x$ are in some large finite set $\calF$ of integer points in $\R^n$~. Generally, such problems are intractable, so we obtain positive algorithmic results by looking at broad natural classes … Read more

Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton, Mouffe, Toint, Weber (2008) for bound-constrained nonlinear problems, and provide numerical experience on multilevel test problems. A suitable choice of the algorithm’s parameters is identified on these problems, yielding a satisfactory compromise between reliability and efficiency. The resulting default algorithm is then … Read more

ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions

We present a new derivative-free algorithm, ORBIT, for unconstrained local optimization of computationally expensive functions. A trust-region framework using interpolating Radial Basis Function (RBF) models is employed. The RBF models considered often allow ORBIT to interpolate nonlinear functions using fewer function evaluations than the polynomial models considered by present techniques. Approximation guarantees are obtained by … Read more

On the Geometry Phase in Model-Based Algorithms for Derivative-Free Optimization

A numerical study of model-based methods for derivative-free optimization is presented. These methods typically include a geometry phase whose goal is to ensure the adequacy of the interpolation set. The paper studies the performance of an algorithm that dispenses with the geometry phase altogether (and therefore does not attempt to control the position of the … Read more

A Log-Robust Optimization Approach to Portfolio Management

In this paper we present a robust optimization approach to portfolio management under uncertainty that (i) builds upon the well-established Lognormal model for stock prices while addressing its limitations, and (ii) incorporates the imperfect knowledge on the true distribution of the continuously compounded rates of return, i.e., the increments of the logarithm of the stock … Read more

LANCELOt_simple, a simple interface to LANCELOT B

We describe LANCELOT_simple, an interface to the LANCELOT B nonlinear optimization package within the GALAHAD} library (Gould, Orban, Toint, 2003) which ignores problem structure. The result is an easy-to-use Fortran 90 subroutine, with a small number of intuitively interpretable arguments. However, since structure is ignored, the means of presenting problems to the solver limited and … Read more

Intensity based Three-Dimensional Reconstruction with Nonlinear Optimization

New images of a three-dimensional scene can be generated from known image sequences using lightfields. To get high quality images, it is important to have accurate information about the structure of the scene. In order to optimize this information, we define a residual-function. This function represents the difference between an image, rendered in a known … Read more

A multilevel algorithm for solving the trust-region subproblem

We present a multilevel numerical algorithm for the exact solution of the Euclidean trust-region subproblem. This particular subproblem typically arises when optimizing a nonlinear (possibly non-convex) objective function whose variables are discretized continuous functions, in which case the different levels of discretization provide a natural multilevel context. The trust-region problem is considered at the highest … Read more

An Active-Set Algorithm for Nonlinear Programming Using Parametric Linear Programming

This paper describes an active-set algorithm for nonlinear programming that solves a parametric linear programming subproblem at each iteration to generate an estimate of the active set. A step is then computed by solving an equality constrained quadratic program based on this active-set estimate. This approach respresents an extension of the standard sequential linear-quadratic programming … Read more

The Squared Slacks Transformation in Nonlinear Programming

We recall the use of squared slacks used to transform inequality constraints into equalities and several reasons why their introduction may be harmful in many algorithmic frameworks routinely used in nonlinear programming. Numerical examples performed with the sequential quadratic programming method illustrate those reasons. CitationCahier du GERAD G-2007-62, Aug. 2007ArticleDownload View PDF