Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more

Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation

We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation, and illustrate empirically that the reformulation can … Read more

Planning for Dynamics under Uncertainty

Planning under uncertainty is a frequently encountered problem. Noisy observation is a typical situation that introduces uncertainty. Such a problem can be formulated as a Partially Observable Markov Decision Process (POMDP). However, solving a POMDP is nontrivial and can be computationally expensive in continuous state, action, observation and latent state space. Through this work, we … Read more

Limited-Memory BFGS with Displacement Aggregation

A displacement aggregation strategy is proposed for the curvature pairs stored in a limited-memory BFGS (a.k.a. L-BFGS) method such that the resulting (inverse) Hessian approximations are equal to those that would be derived from a full-memory BFGS method. This means that, if a sufficiently large number of pairs are stored, then an optimization algorithm employing … Read more

High-Order Evaluation Complexity for Convexly-Constrained Optimization with Non-Lipschitzian Group Sparsity Terms

This paper studies high-order evaluation complexity for partially separable convexly-constrained optimization involving non-Lipschitzian group sparsity terms in a nonconvex objective function. We propose a partially separable adaptive regularization algorithm using a $p$-th order Taylor model and show that the algorithm can produce an (epsilon,delta)-approximate q-th-order stationary point in at most O(epsilon^{-(p+1)/(p-q+1)}) evaluations of the objective … Read more

Algorithms for the circle packing problem based on mixed-integer DC programming

Circle packing problems are a class of packing problems which attempt to pack a given set of circles into a container with no overlap. In this paper, we focus on the circle packing problem proposed by L{\’o}pez et.al. The problem is to pack circles of unequal size into a fixed size circular container, so as … Read more

A note on solving nonlinear optimization problems in variable precision

This short note considers an efficient variant of the trust-region algorithm with dynamic accuracy proposed Carter (1993) and Conn, Gould and Toint (2000) as a tool for very high-performance computing, an area where it is critical to allow multi-precision computations for keeping the energy dissipation under control. Numerical experiments are presented indicating that the use … Read more

An Inexact First-order Method for Constrained Nonlinear Optimization

The primary focus of this paper is on designing inexact first-order methods for solving large-scale constrained nonlinear optimization problems. By controlling the inexactness of the subproblem solution, we can significantly reduce the computational cost needed for each iteration. A penalty parameter updating strategy during the subproblem solve enables the algorithm to automatically detect infeasibility. Global … Read more

Lectures on Parametric Optimization: An Introduction

The report aims to provide an overview over results from Parametric Optimization which could be called classical results on the subject. Parametric Optimization considers optimization problems depending on a parameter and describes how the feasible set, the value function, and the local or global minimizers of the program depend on changes in the parameter. After … Read more

Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods

This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval h based on the noise estimation techniques of Hamming (2012) and Moré and Wild (2011). This noise estimation procedure … Read more