Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization

Sequential quadratic optimization algorithms are proposed for solving smooth nonlinear optimization problems with equality constraints. The main focus is an algorithm proposed for the case when the constraint functions are deterministic, and constraint function and derivative values can be computed explicitly, but the objective function is stochastic. It is assumed in this setting that it … Read more

Convex Maximization via Adjustable Robust Optimization

Maximizing a convex function over convex constraints is an NP-hard problem in general. We prove that such a problem can be reformulated as an adjustable robust optimization (ARO) problem where each adjustable variable corresponds to a unique constraint of the original problem. We use ARO techniques to obtain approximate solutions to the convex maximization problem. … Read more

Aid Allocation for Camp-Based and Urban Refugees with Uncertain Demand and Replenishments

There are nearly 26 million refugees worldwide seeking safety from persecution, violence, conflict, and human rights violations. Camp-based refugees are those that seek shelter in refugee camps, whereas urban refugees inhabit nearby, surrounding populations. The systems that supply aid to refugee camps may suffer from ineffective distribution due to challenges in administration, demand uncertainty and … Read more

On the convergence of augmented Lagrangian strategies for nonlinear programming

Augmented Lagrangian algorithms are very popular and successful methods for solving constrained optimization problems. Recently, the global convergence analysis of these methods have been dramatically improved by using the notion of the sequential optimality conditions. Such conditions are optimality conditions independently of the fulfilment of any constraint qualifications and provide theoretical tools to justify stopping … Read more

A new discrete filled function with generic local searches for global nonlinear integer optimization

The problem of finding global minima of nonlinear discrete functions arises in many fields of practical matters. In recent years, methods based on discrete filled functions become popular as ways of solving these sort of problems. However, they rely on the steepest descent method for local searches. Here we present an approach that does not … Read more

On Constraint Qualifications for Second-Order Optimality Conditions Depending on a Single Lagrange Multiplier.

Second-order optimality conditions play an important role in continuous optimization. In this paper, we present and discuss new constraint qualifications to ensure the validity of some well-known second-order optimality conditions. Our main interest is on second-order conditions that can be associated with numerical methods for solving constrained optimization problems. Such conditions depend on a single … Read more

A Generalized Worst-Case Complexity Analysis for Non-Monotone Line Searches

We study the worst-case complexity of a non-monotone line search framework that covers a wide variety of known techniques published in the literature. In this framework, the non-monotonicity is controlled by a sequence of nonnegative parameters. We obtain complexity bounds to achieve approximate first-order optimality even when this sequence is not summable. ArticleDownload View PDF

Nonlinear Optimization of District Heating Networks

We develop a complementarity-constrained nonlinear optimization model for the time-dependent control of district heating networks. The main physical aspects of water and heat flow in these networks are governed by nonlinear and hyperbolic 1d partial differential equations. In addition, a pooling-type mixing model is required at the nodes of the network to treat the mixing … Read more

Using interior point solvers for optimizing progressive lens models with spherical coordinates

Designing progressive lenses is a complex problem that has been previously solved by formulating an optimization model based on Cartesian coordinates. In this work a new progressive lens model using spherical coordinates is presented, and interior point solvers are used to solve this new optimization model. Although this results in a highly nonlinear, nonconvex, continuous … Read more

Solving Chance-Constrained Problems via a Smooth Sample-Based Nonlinear Approximation

We introduce a new method for solving nonlinear continuous optimization problems with chance constraints. Our method is based on a reformulation of the probabilistic constraint as a quantile function. The quantile function is approximated via a differentiable sample average approximation. We provide theoretical statistical guarantees of the approximation, and illustrate empirically that the reformulation can … Read more