Branch and Bound based methods to minimize the energy consumed by an electrical vehicle on long travels with slopes

We consider the problem of minimization of the energy consumed by an electrical vehicle performing quite long travels with slopes. The model we address here, takes into account the electrical and mechanical differential equations of the vehicle. This yields a mixed-integer optimal control problem that can be approximated, using a methodology based on some decomposition … Read more

A Sparsity Preserving Convexification Procedure for Indefinite Quadratic Programs Arising in Direct Optimal Control

Quadratic programs (QP) with an indefinite Hessian matrix arise naturally in some direct optimal control methods, e.g. as subproblems in a sequential quadratic programming (SQP) scheme. Typically, the Hessian is approximated with a positive definite matrix to ensure having a unique solution; such a procedure is called \emph{regularization}. We present a novel regularization method tailored … Read more

Efficient Symmetric Hessian Propagation for Direct Optimal Control

Direct optimal control algorithms first discretize the continuous-time optimal control problem and then solve the resulting finite dimensional optimization problem. If Newton type optimization algorithms are used for solving the discretized problem, accurate first as well as second order sensitivity information needs to be computed. This article develops a novel approach for computing Hessian matrices … Read more

Global optimal control with the direct multiple shooting method

We propose to solve global optimal control problems with a new algorithm that is based on Bock’s direct multiple shooting method. We provide conditions and numerical evidence for a significant overall runtime reduction compared to the standard single shooting approach. CitationOptimal Control Applications and Methods, Vol. 39 (2), pp. 449–470, 2017 DOI 10.1002/oca.2324 Article online … Read more

Numerical Solution of Linear-Quadratic Optimal Control Problems for Switching System

In this paper we obtained an approach to the optimal switching control problem with unknown switching points which it is described in reference [1, 2]. In reference [1], the authors studied the Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems. In [1], the authors assumed the switching point t1 is xed in the interval … Read more

Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

Controlled Markov Chains with AVaR Criteria for Unbounded Costs

In this paper, we consider the control problem with the Average-Value-at-Risk (AVaR) criteria of the possibly unbounded $L^{1}$-costs in infinite horizon on a Markov Decision Process (MDP). With a suitable state aggregation and by choosing a priori a global variable $s$ heuristically, we show that there exist optimal policies for the infinite horizon problem. To … Read more

Error estimates for the Euler discretization of an optimal control problem with first-order state constraints

We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories are approximated with a classical Euler scheme. We obtain order one approximation results in the $L^\infty$ norm (as opposed to the order 2/3 obtained in the literature). We assume either a strong second … Read more

Discrete Approximations of a Controlled Sweeping Process

The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhedral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of … Read more

Distributed Optimization Methods for Large Scale Optimal Control

This thesis aims to develop and implement both nonlinear and linear distributed optimization methods that are applicable, but not restricted to the optimal control of distributed systems. Such systems are typically large scale, thus the well-established centralized solution strategies may be computationally overly expensive or impossible and the application of alternative control algorithms becomes necessary. … Read more