Finite convergence of sum-of-squares hierarchies for the stability number of a graph

We investigate a hierarchy of semidefinite bounds $\vartheta^{(r)}(G)$ for the stability number $\alpha(G)$ of a graph $G$, based on its copositive programming formulation and introduced by de Klerk and Pasechnik [SIAM J. Optim. 12 (2002), pp.875–892], who conjectured convergence to $\alpha(G)$ in $r=\alpha(G) -1$ steps. Even the weaker conjecture claiming finite convergence is still open. … Read more

Complexity, Exactness, and Rationality in Polynomial Optimization

We study representation of solutions and certificates to quadratic and cubic optimization problems. Specifically, we focus on minimizing a cubic function over a polyhedron and also minimizing a linear function over quadratic constraints. We show when there exist rational feasible solutions (and if we can detect them) and when we can prove feasibility of sublevel … Read more

Optimizing hypergraph-based polynomials modeling job-occupancy in queueing with redundancy scheduling

We investigate two classes of multivariate polynomials with variables indexed by the edges of a uniform hypergraph and coefficients depending on certain patterns of union of edges. These polynomials arise naturally to model job-occupancy in some queuing problems with redundancy scheduling policy. The question, posed by Cardinaels, Borstand van Leeuwaarden (arXiv:2005.14566, 2020), is to decide … Read more

Global optimality in minimum compliance topology optimization of frames and shells by moment-sum-of-squares hierarchy

The design of minimum-compliance bending-resistant structures with continuous cross-section parameters is a challenging task because of its inherent non-convexity. Our contribution develops a strategy that facilitates computing all guaranteed globally optimal solutions for frame and shell structures under multiple load cases and self-weight. To this purpose, we exploit the fact that the stiffness matrix is … Read more

Complexity Aspects of Fundamental Questions in Polynomial Optimization

In this thesis, we settle the computational complexity of some fundamental questions in polynomial optimization. These include the questions of (i) finding a local minimum, (ii) testing local minimality of a candidate point, and (iii) deciding attainment of the optimal value. Our results characterize the complexity of these three questions for all degrees of the … Read more

On the Complexity of Finding a Local Minimizer of a Quadratic Function over a Polytope

We show that unless P=NP, there cannot be a polynomial-time algorithm that finds a point within Euclidean distance $c^n$ (for any constant $c \ge 0$) of a local minimizer of an $n$-variate quadratic function over a polytope. This result (even with $c=0$) answers a question of Pardalos and Vavasis that appeared in 1992 on a … Read more

Complexity Aspects of Local Minima and Related Notions

We consider the notions of (i) critical points, (ii) second-order points, (iii) local minima, and (iv) strict local minima for multivariate polynomials. For each type of point, and as a function of the degree of the polynomial, we study the complexity of deciding (1) if a given point is of that type, and (2) if … Read more

A note on the Lasserre hierarchy for different formulations of the maximum independent set problem

In this note, we consider several polynomial optimization formulations of the max- imum independent set problem and the use of the Lasserre hierarchy with these different formulations. We demonstrate using computational experiments that the choice of formulation may have a significant impact on the resulting bounds. We also provide theoretical justifications for the observed behavior. … Read more

Integrality of Linearizations of Polynomials over Binary Variables using Additional Monomials

Polynomial optimization problems over binary variables can be expressed as integer programs using a linearization with extra monomials in addition to those arising in the given polynomial. We characterize when such a linearization yields an integral relaxation polytope, generalizing work by Del Pia and Khajavirad (SIAM Journal on Optimization, 2018) and Buchheim, Crama and Rodríguez-Heck … Read more

Random projections for quadratic programs

Random projections map a set of points in a high dimensional space to a lower dimen- sional one while approximately preserving all pairwise Euclidean distances. While random projections are usually applied to numerical data, we show they can be successfully applied to quadratic programming formulations over a set of linear inequality constraints. Instead of solving … Read more