A Minimax Theorem with Applications to Machine Learning, Signal Processing, and Finance

This paper concerns a fractional function of the form $x^Ta/\sqrt{x^TBx}$, where $B$ is positive definite. We consider the game of choosing $x$ from a convex set, to maximize the function, and choosing $(a,B)$ from a convex set, to minimize it. We prove the existence of a saddle point and describe an efficient method, based on … Read more

Satisficing measures for analysis of risky positions

In this work we introduce a class of measures for evaluating the quality of financial positions based on their ability to achieve desired financial goals. In the spirit of Simon (1959), we call these measures satisficing measures and show that they are dual to classes of risk measures. This approach has the advantage that aspiration … Read more

Experiments in Robust Portfolio Optimization

We present experimental results on portfolio optimization problems with return errors under the robust optimization framework. We use several a histogram-like model for return deviations, and a model that allows correlation among errors, together with a cutting-plane algorithm which proves effective for large, real-life data sets. Citation Columbia Center for Financial Engineering Report 2007-01 Columbia … Read more

An Exact Solution Approach for Portfolio Optimization Problems under Stochastic and Integer Constraints

In this paper, we study extensions of the classical Markowitz mean-variance portfolio optimization model. First, we consider that the expected asset returns are stochastic by introducing a probabilistic constraint which imposes that the expected return of the constructed portfolio must exceed a prescribed return threshold with a high confidence level. We study the deterministic equivalents … Read more

Consistency of robust portfolio estimators

It is a matter of common knowledge that traditional Markowitz optimization based on sample means and covariances performs poorly in practice. For this reason, diverse attempts were made to improve performance of portfolio optimization. In this paper, we investigate three popular portfolio selection models built upon classical mean-variance theory. The first model is an extension … Read more

Large Scale Portfolio Optimization with Piecewise Linear Transaction Costs

We consider the fundamental problem of computing an optimal portfolio based on a quadratic mean-variance model of the objective function and a given polyhedral representation of the constraints. The main departure from the classical quadratic programming formulation is the inclusion in the objective function of piecewise linear, separable functions representing the transaction costs. We handle … Read more

Rebalancing an Investment Portfolio in the Presence of Convex Transaction Costs

The inclusion of transaction costs is an essential element of any realistic portfolio optimization. In this paper, we consider an extension of the standard portfolio problem in which convex transaction costs are incurred to rebalance an investment portfolio. In particular, we consider linear, piecewise linear, and quadratic transaction costs. The Markowitz framework of mean-variance efficiency … Read more

Portfolio Investment with the Exact Tax Basis via Nonlinear Programming

Computing the optimal portfolio policy of an investor facing capital gains tax is a challenging problem: because the tax to be paid depends on the price at which the security was purchased (the tax basis), the optimal policy is path dependent and the size of the problem grows exponentially with the number of time periods. … Read more

Solving Nonlinear Portfolio Optimization Problems with the Primal-Dual Interior Point Method

Stochastic programming is recognized as a powerful tool to help decision making under uncertainty in financial planning. The deterministic equivalent formulations of these stochastic programs have huge dimensions even for moderate numbers of assets, time stages and scenarios per time stage. So far models treated by mathematical programming approaches have been limited to simple linear … Read more

Portfolio Optimization with Stochastic Dominance Constraints

We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration … Read more