Immunizing conic quadratic optimization problems against implementation errors

We show that the robust counterpart of a convex quadratic constraint with ellipsoidal implementation error is equivalent to a system of conic quadratic constraints. To prove this result we first derive a sharper result for the S-lemma in case the two matrices involved can be simultaneously diagonalized. This extension of the S-lemma may also be … Read more

On the Robust Knapsack Problem

We consider an uncertain variant of the knapsack problem that arises when the exact weight of each item is not exactly known in advance but belongs to a given interval, and the number of items whose weight differs from the nominal value is bounded by a constant. We analyze the worsening of the optimal solution … Read more

Inner approximations for polynomial matrix inequalities and robust stability regions

Following a polynomial approach, many robust fixed-order controller design problems can be formulated as optimization problems whose set of feasible solutions is modelled by parametrized polynomial matrix inequalities (PMI). These feasibility sets are typically nonconvex. Given a parametrized PMI set, we provide a hierarchy of linear matrix inequality (LMI) problems whose optimal solutions generate inner … Read more

Planning Wireless Networks with Demand Uncertainty using Robust Optimization

An optimal planning of future wireless networks is fundamental to satisfy rising traffic demands jointly with the utilization of sophisticated techniques, such as OFDMA. Current methods for this task require a static model of the problem. However, uncertainty of data arises frequently in wireless networks, e. g., fluctuat- ing bit rate requirements. In this paper, … Read more

Models and Algorithms for Distributionally Robust Least Squares Problems

We present different robust frameworks using probabilistic ambiguity descriptions of the input data in the least squares problems. The three probability ambiguity descriptions are given by: (1) confidence interval over the first two moments; (2) bounds on the probability measure with moments constraints; (3) confidence interval over the probability measure by using the Kantorovich probability … Read more

Affine recourse for the robust network design problem: between static and dynamic routing

Affinely-Adjustable Robust Counterparts provide tractable alternatives to (two-stage) robust programs with arbitrary recourse. We apply them to robust network design with polyhedral demand uncertainty, introducing the affine routing principle. We compare the affine routing to the well-studied static and dynamic routing schemes for robust network design. All three schemes are embedded into the general framework … Read more

Minimax and risk averse multistage stochastic programming

In this paper we study relations between the minimax, risk averse and nested formulations of multistage stochastic programming problems. In particular, we discuss conditions for time consistency of such formulations of stochastic problems. We also describe a connection between law invariant coherent risk measures and the corresponding sets of probability measures in their dual representation. … Read more

Dynamic programming approach to adjustable robust optimization

In this paper we consider the adjustable robust approach to multistage optimization, for which we derive dynamic programming equations. We also discuss this from a point of view of risk averse stochastic programming. As an example we consider a robust formulation of the classical inventory model and show that, similar to the risk neutral case, … Read more

Costs and benefits of robust optimization

In this exposition the robust counterpart approach by Ben-Tal, El Ghaoui and Nemirovski is investigated with respect to its costs and benefits, with the focus on the costs of robustification. Although robust optimization has gained more and more interest among both academics and practitioners and although this certainly represents a well-established theory, it is to … Read more

Robust Timing of Markdowns

We propose an approach to the timing of markdowns over a finite time horizon that does not require the precise knowledge of the underlying probabilities, instead relying on range forecasts for the arrival rates of the demand processes, and that captures the degree of the manager’s risk aversion through intuitive budget-of-uncertainty functions. These budget functions … Read more