Cutting-Set Methods for Robust Convex Optimization with Pessimizing Oracles

We consider a general worst-case robust convex optimization problem, with arbitrary dependence on the uncertain parameters, which are assumed to lie in some given set of possible values. We describe a general method for solving such a problem, which alternates between optimization and worst-case analysis. With exact worst-case analysis, the method is shown to converge … Read more

An Efficient Algorithm for Computing Robust Minimum Capacity s-t Cuts

The Minimum Capacity s-t Cut Problem (Min Cut) is an intensively studied problem in combinatorial optimization. In this paper, we study Min Cut when arc capacities are uncertain but known to exist in pre-specified intervals. This framework can be used to model many real-world applications of Min Cut under data uncertainty such as in open-pit … Read more

A Log-Robust Optimization Approach to Portfolio Management

In this paper we present a robust optimization approach to portfolio management under uncertainty that (i) builds upon the well-established Lognormal model for stock prices while addressing its limitations, and (ii) incorporates the imperfect knowledge on the true distribution of the continuously compounded rates of return, i.e., the increments of the logarithm of the stock … Read more

Robust Efficient Frontier Analysis with a Separable Uncertainty Model

Mean-variance (MV) analysis is often sensitive to model mis-specification or uncertainty, meaning that the MV efficient portfolios constructed with an estimate of the model parameters (i.e., the expected return vector and covariance of asset returns) can give very poor performance for another set of parameters that is similar and statistically hard to distinguish from the … Read more

A Min-Max Regret Robust Optimization Approach for Large Scale Full Factorial Scenario Design of Data Uncertainty

This paper presents a three-stage optimization algorithm for solving two-stage robust decision making problems under uncertainty with min-max regret objective. The structure of the first stage problem is a general mixed integer (binary) linear programming model with a specific model of uncertainty that can occur in any of the parameters, and the second stage problem … Read more

The Exact Feasibility of Randomized Solutions of Robust Convex Programs

Robust optimization programs are hard to solve even when the constraints are convex. In previous contributions, it has been shown that approximately robust solutions (i.e. solutions feasible for all constraints but a small fraction of them) to convex programs can be obtained at low computational cost through constraints randomization. In this paper, we establish new … Read more

Explicit reformulations for robust optimization problems with general uncertainty sets

We consider a rather general class of mathematical programming problems with data uncertainty, where the uncertainty set is represented by a system of convex inequalities. We prove that the robust counterparts of this class of problems can be equivalently reformulated as finite and explicit optimization problems. Moreover, we develop simplified reformulations for problems with uncertainty … Read more

The Value of Information in Inventory Management

Inventory management traditionally assumes the precise knowledge of the underlying demand distribution and a risk-neutral manager. New product introduction does not fit this framework because (i) not enough information is available to compute probabilities and (ii) managers are generally risk-averse. In this work, we analyze the value of information for two-stage inventory management in a … Read more

Robust Inventory Management Using Tractable Replenishment Policies

We propose tractable replenishment policies for a multi-period, single product inventory control problem under ambiguous demands, that is, only limited information of the demand distributions such as mean, support and deviation measures are available. We obtain the parameters of the tractable replenishment policies by solving a deterministic optimization problem in the form of second order … Read more

Experiments in Robust Portfolio Optimization

We present experimental results on portfolio optimization problems with return errors under the robust optimization framework. We use several a histogram-like model for return deviations, and a model that allows correlation among errors, together with a cutting-plane algorithm which proves effective for large, real-life data sets. Citation Columbia Center for Financial Engineering Report 2007-01 Columbia … Read more