Spectral projected gradient method for stochastic optimization

We consider the Spectral Projected Gradient method for solving constrained optimization problems with the objective function in the form of mathematical expectation. It is assumed that the feasible set is convex, closed and easy to project on. The objective function is approximated by a sequence of Sample Average Approximation functions with different sample sizes. The … Read more

Uniform Convergence of Sample Average Approximation with Adaptive Importance Sampling

We study sample average approximations under adaptive importance sampling. Based on a Banach-space-valued martingale strong law of large numbers, we establish uniform convergence of the sample average approximation to the function being approximated. In the optimization context, we obtain convergence of the optimal value and optimal solutions of the sample average approximation. CitationTechnical Report IEMS … Read more

Provably Near-Optimal Approximation Schemes for Implicit Stochastic and for Sample-Based Dynamic Programs

In this paper we address two models of non-deterministic discrete-time finite-horizon dynamic programs (DPs): implicit stochastic DPs – the information about the random events is given by value oracles to their CDFs; and sample-based DPs – the information about the random events is deduced via samples. In both models the single period cost functions are … Read more

Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities

Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build … Read more

Chance-constrained problems and rare events: an importance sampling approach

We study chance-constrained problems in which the constraints involve the probability of a rare event. We discuss the relevance of such problems and show that the existing sampling-based algorithms cannot be applied directly in this case, since they require an impractical number of samples to yield reasonable solutions. Using a Sample Average Approximation (SAA) approach … Read more

Nonmonotone line search methods with variable sample size

Nonmonotone line search methods for unconstrained minimization with the objective functions in the form of mathematical expectation are considered. The objective function is approximated by the sample average approximation (SAA) with a large sample of fixed size. The nonmonotone line search framework is embedded with a variable sample size strategy such that different sample size … Read more

Tail bounds for stochastic approximation

Stochastic-approximation gradient methods are attractive for large-scale convex optimization because they offer inexpensive iterations. They are especially popular in data-fitting and machine-learning applications where the data arrives in a continuous stream, or it is necessary to minimize large sums of functions. It is known that by appropriately decreasing the variance of the error at each … Read more

Worst-case-expectation approach to optimization under uncertainty

In this paper we discuss multistage programming with the data process subject to uncertainty. We consider a situation were the data process can be naturally separated into two components, one can be modeled as a random process, with a specified probability distribution, and the other one can be treated from a robust (worst case) point … Read more

Maximizing expected utility over a knapsack constraint

The expected utility knapsack problem is to pick a set of items whose values are described by random variables so as to maximize the expected utility of the total value of the items picked while satisfying a constraint on the total weight of items picked. We consider the following solution approach for this problem: (i) … Read more

Consistency of sample estimates of risk averse stochastic programs

In this paper we study asymptotic consistency of law invariant convex risk measures and the corresponding risk averse stochastic programming problems for independent identically distributed data. Under mild regularity conditions we prove a Law of Large Numbers and epiconvergence of the corresponding statistical estimators. This can be applied in a straight forward way to establishing … Read more