Accelerated projected gradient algorithms for sparsity constrained optimization problems

We consider the projected gradient algorithm for the nonconvex best subset selection problem that minimizes a given empirical loss function under an \(\ell_0\)-norm constraint. Through decomposing the feasible set of the given sparsity constraint as a finite union of linear subspaces, we present two acceleration schemes with global convergence guarantees, one by same-space extrapolation and … Read more

Accelerating Frank-Wolfe via Averaging Step Directions

The Frank-Wolfe method is a popular method in sparse constrained optimization, due to its fast per-iteration complexity. However, the tradeoff is that its worst case global convergence is comparatively slow, and importantly, is fundamentally slower than its flow rate–that is to say, the convergence rate is throttled by discretization error. In this work, we consider … Read more

Comparing Solution Paths of Sparse Quadratic Minimization with a Stieltjes Matrix

This paper studies several solution paths of sparse quadratic minimization problems as a function of the weighing parameter of the bi-objective of estimation loss versus solution sparsity. Three such paths are considered: the “L0-path” where the discontinuous L0-function provides the exact sparsity count; the “L1-path” where the L1-function provides a convex surrogate of sparsity count; … Read more

Frank-Wolfe and friends: a journey into projection-free first-order optimization methods

Invented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank-Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility … Read more

Exterior-point Optimization for Nonconvex Learning

In this paper we present the nonconvex exterior-point optimization solver (NExOS)—a novel first-order algorithm tailored to constrained nonconvex learning problems. We consider the problem of minimizing a convex function over nonconvex constraints, where the projection onto the constraint set is single-valued around local minima. A wide range of nonconvex learning problems have this structure including … Read more

Optimal K-Thresholding Algorithms for Sparse Optimization Problems

The simulations indicate that the existing hard thresholding technique independent of the residual function may cause a dramatic increase or numerical oscillation of the residual. This inherit drawback of the hard thresholding renders the traditional thresholding algorithms unstable and thus generally inefficient for solving practical sparse optimization problems. How to overcome this weakness and develop … Read more

Feature selection in SVM via polyhedral k-norm

We treat the Feature Selection problem in the Support Vector Machine (SVM) framework by adopting an optimization model based on use of the $\ell_0$ pseudo–norm. The objective is to control the number of non-zero components of normal vector to the separating hyperplane, while maintaining satisfactory classification accuracy. In our model the polyhedral norm $\|.\|_{[k]}$, intermediate … Read more

Convex optimization under combinatorial sparsity constraints

We present a heuristic approach for convex optimization problems containing sparsity constraints. The latter can be cardinality constraints, but our approach also covers more complex constraints on the support of the solution. For the special case that the support is required to belong to a matroid, we propose an exchange heuristic adapting the support in … Read more

Iterative weighted thresholding method for sparse solution of underdetermined linear equations

Recently, iterative reweighted methods have attracted much interest in compressed sensing, since they perform better than unweighted ones in most cases. Currently, weights are chosen heuristically in existing iterative reweighted methods, and nding an optimal weight is an open problem since we do not know the exact support set beforehand. In this paper, we present … Read more

A General Regularized Continuous Formulation for the Maximum Clique Problem

In this paper, we develop a general regularization-based continuous optimization framework for the maximum clique problem. In particular, we consider a broad class of regularization terms that can be included in the classic Motzkin-Strauss formulation and we develop conditions that guarantee the equivalence between the continuous regularized problem and the original one in both a … Read more