Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_0,\ldots,x_p,y)$, subject to coupled linear equality constraints. Our ADMM updates each of the primal variables $x_0,\ldots,x_p,y$, followed by updating the dual variable. We separate the variable $y$ from $x_i$’s as it … Read more

A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems

We develop a fast and robust algorithm for solving large scale convex composite optimization models with an emphasis on the $\ell_1$-regularized least squares regression (Lasso) problems. Despite the fact that there exist a large number of solvers in the literature for the Lasso problems, we found that no solver can efficiently handle difficult large scale … Read more

A Reduced-Space Algorithm for Minimizing $\ell_1hBcRegularized Convex Functions

We present a new method for minimizing the sum of a differentiable convex function and an $\ell_1$-norm regularizer. The main features of the new method include: $(i)$ an evolving set of indices corresponding to variables that are predicted to be nonzero at a solution (i.e., the support); $(ii)$ a reduced-space subproblem defined in terms of … Read more

Global Convergence of ADMM in Nonconvex Nonsmooth Optimization

In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, $\phi(x_1,\ldots,x_p,y)$, subject to linear equality constraints that couple $x_1,\ldots,x_p,y$, where $p\ge 1$ is an integer. Our ADMM sequentially updates the primal variables in the order $x_1,\ldots,x_p,y$, followed by updating the dual … Read more

Generalized Conjugate Gradient Methods for $\ell_1$ Regularized Convex Quadratic Programming with Finite Convergence

The conjugate gradient (CG) method is an efficient iterative method for solving large-scale strongly convex quadratic programming (QP). In this paper we propose some generalized CG (GCG) methods for solving the $\ell_1$-regularized (possibly not strongly) convex QP that terminate at an optimal solution in a finite number of iterations. At each iteration, our methods first … Read more

Optimization over Sparse Symmetric Sets via a Nonmonotone Projected Gradient Method

We consider the problem of minimizing a Lipschitz differentiable function over a class of sparse symmetric sets that has wide applications in engineering and science. For this problem, it is known that any accumulation point of the classical projected gradient (PG) method with a constant stepsize $1/L$ satisfies the $L$-stationarity optimality condition that was introduced … Read more

Quantitative recovery conditions for tree-based compressed sensing

As shown in [9, 1], signals whose wavelet coefficients exhibit a rooted tree structure can be recovered — using specially-adapted compressed sensing algorithms — from just $n=\mathcal{O}(k)$ measurements, where $k$ is the sparsity of the signal. Motivated by these results, we introduce a simplified proportional-dimensional asymptotic framework which enables the quantitative evaluation of recovery guarantees … Read more

Sparse optimization for inverse problems in atmospheric modelling

We consider inverse problems in atmospheric modelling. Instead of using the ordinary least squares, we add a weighting matrix based on the topology of measurement points and show the connection with Bayesian modelling. Since the source–receptor sensitivity matrix is usually ill-conditioned, the problem is often regularized, either by perturbing the objective function or by modifying … Read more

An optimal subgradient algorithm for large-scale convex optimization in simple domains

This paper shows that the optimal subgradient algorithm, OSGA, proposed in \cite{NeuO} can be used for solving structured large-scale convex constrained optimization problems. Only first-order information is required, and the optimal complexity bounds for both smooth and nonsmooth problems are attained. More specifically, we consider two classes of problems: (i) a convex objective with a … Read more

A Fast Active Set Block Coordinate Descent Algorithm for l1-regularized least squares

The problem of finding sparse solutions to underdetermined systems of linear equations arises in several real-world problems (e.g. signal and image processing, compressive sensing, statistical inference). A standard tool for dealing with sparse recovery is the l1-regularized least-squares approach that has been recently attracting the attention of many researchers. In this paper, we describe an … Read more