Sample average approximation and model predictive control for inventory optimization
We study multistage stochastic optimization problems using sample average approximation (SAA) and model predictive control (MPC) as solution approaches. MPC is frequently employed when the size of the problem renders stochastic dynamic programming intractable, but it is unclear how this choice affects out-of-sample performance. To compare SAA and MPC out-of-sample, we formulate and solve an … Read more