A deterministic algorithm for solving stochastic minimax dynamic programmes

In this paper, we present an algorithm for solving stochastic minimax dynamic programmes where state and action sets are convex and compact. A feature of the formulations studied is the simultaneous non-rectangularity of both `min’ and `max’ feasibility sets. We begin by presenting convex programming upper and lower bound representations of saddle functions — extending … Read more

Large neighbourhood Benders’ search

A general enhancement of the Benders’ decomposition algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, their use is typically limited to finding solutions to the Benders’ decomposition master problem, which may be … Read more

Two-stage stochastic programming model for routing multiple drones with fuel constraints

Uses of drones and unmanned vehicles (UAVs) in ground or aerial are increasing in both civil and military applications. This paper develops a two-stage stochastic optimization model with a recourse for a multiple drone-routing problem with fuel constraints under uncertainty for the travel between any pair of targets/refueling-sites/depot. We are given a set of n … Read more

Resource Allocation for Contingency Planning: An Inexact Bundle Method for Stochastic Optimization

Resource allocation models in contingency planning aim to mitigate unexpected failures in supply chains due to disruptions with rare occurrence but disastrous consequences. This paper formulates this problems as a two-stage stochastic optimization with a risk-averse recourse function, and proposes a novel computationally tractable solution approach. The method relies on an inexact bundle method and … Read more

Modeling Time-dependent Randomness in Stochastic Dual Dynamic Programming

We consider the multistage stochastic programming problem where uncertainty enters the right-hand sides of the problem. Stochastic Dual Dynamic Programming (SDDP) is a popular method to solve such problems under the assumption that the random data process is stagewise independent. There exist two approaches to incorporate dependence into SDDP. One approach is to model the … Read more

New solution approaches for the maximum-reliability stochastic network interdiction problem

We investigate methods to solve the maximum-reliability stochastic network interdiction problem (SNIP). In this problem, a defender interdicts arcs on a directed graph to minimize an attacker’s probability of undetected traversal through the network. The attacker’s origin and destination are unknown to the defender and assumed to be random. SNIP can be formulated as a … Read more

Payment Mechanisms for Electricity Markets with Uncertain Supply

This paper provides a framework for deriving payment mechanisms for intermittent, flexible and inflexible electricity generators who are dispatched according to the optimal solution of a stochastic program that minimizes the expected cost of generation plus deviation. The first stage corresponds to a pre-commitment decision, and the second stage corresponds to real-time generation that adapts … Read more

Optimal scenario generation and reduction in stochastic programming

Scenarios are indispensable ingredients for the numerical solution of stochastic optimization problems. Earlier approaches for optimal scenario generation and reduction are based on stability arguments involving distances of probability measures. In this paper we review those ideas and suggest to make use of stability estimates based on distances containing minimal information, i.e., on data appearing … Read more

Learning Enabled Optimization: Towards a Fusion of Statistical Learning and Stochastic Optimization

Several emerging applications, such as “Analytics of Things” and “Integrative Analytics” call for a fusion of statistical learning (SL) and stochastic optimization (SO). The Learning Enabled Optimization paradigm fuses concepts from these disciplines in a manner which not only enriches both SL and SO, but also provides a framework which supports rapid model updates and … Read more

Forecast-based scenario-tree generation method

Sometimes, the best available information about an uncertain future is a single forecast. On the other hand, stochastic-programming models need future data in the form of scenario trees. While a single forecast does not provide enough information to construct a scenario tree, a forecast combined with historical data does—but none of the standard scenario-generation methods … Read more