Lifted Polymatroid Inequalities for Mean-Risk Optimization with Indicator Variables

We investigate a mixed 0-1 conic quadratic optimization problem with indicator variables arising in mean-risk optimization. The indicator variables are often used to model non-convexities such as fixed charges or cardinality constraints. Observing that the problem reduces to a submodular function minimization for its binary restriction, we derive three classes of strong convex valid inequalities … Read more

Path Cover and Path Pack Inequalities for the Capacitated Fixed-Charge Network Flow Problem

Capacitated fixed-charge network flows are used to model a variety of problems in telecommunication, facility location, production planning and supply chain management. In this paper, we investigate capacitated path substructures and derive strong and easy-to-compute path cover and path pack inequalities. These inequalities are based on an explicit characterization of the submodular inequalities through a … Read more

Maximizing a class of utility functions over the vertices of a polytope

Given a polytope X, a monotone concave univariate function g, and two vectors c and d, we study the discrete optimization problem of finding a vertex of X that maximizes the utility function c’x + g(d’x). This problem has numerous applications in combinatorial optimization with a probabilistic objective, including estimation of project duration with stochastic … Read more

Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: $P = \cset{(w,x)\in \reals \times \set{0,1}^N}{w \leq f(a’x + d), b’x \leq B}$ where $N$ is a positive integer, $f:\reals \mapsto \reals$ is a concave function, $a, b \in \reals^N$ are nonnegative vectors, $d$ is a real … Read more

Maximizing expected utility over a knapsack constraint

The expected utility knapsack problem is to pick a set of items whose values are described by random variables so as to maximize the expected utility of the total value of the items picked while satisfying a constraint on the total weight of items picked. We consider the following solution approach for this problem: (i) … Read more

Inclusion Certificates and Simultaneous Convexification of Functions

We define the inclusion certificate as a measure that expresses each point in the domain of a collection of functions as a convex combination of other points in the domain. Using inclusion certificates, we extend the convex extensions theory to enable simultaneous convexification of functions. We discuss conditions under which the domain of the functions … Read more