An LPCC Approach to Nonconvex Quadratic Programs

Filling a gap in nonconvex quadratic programming, this paper shows that the global resolution of a feasible quadratic program (QP), which is not known a priori to be bounded or unbounded below, can be accomplished in finite time by solving a linear program with linear complementarity constraints, i.e., an LPCC. Alternatively, this task can be … Read more

An Analysis of Weighted Least Squares Method and Layered Least Squares Method with the Basis Block Lower Triangular Matrix Form

In this paper, we analyze the limiting behavior of the weighted least squares problem $\min_{x\in\Re^n}\sum_{i=1}^p\|D_i(A_ix-b_i)\|^2$, where each $D_i$ is a positive definite diagonal matrix. We consider the situation where the magnitude of the weights are drastically different block-wisely so that $\max(D_1)\geq\min(D_1) \gg \max(D_2) \geq \min(D_2) \gg \max(D_3) \geq \ldots \gg \max(D_{p-1}) \geq \min(D_{p-1}) \gg \max(D_p)$. … Read more

The Price of Atomic Selfish Ring Routing

We study selfish routing in ring networks with respect to minimizing the maximum latency. Our main result is an establishement of constant bounds on the price of stability (PoS) for routing unsplittable flows with linear latency. We show that the PoS is at most 6.83, which reduces to 4:57 when the linear latency functions are … Read more

The Difference Between 5×5 Doubly Nonnegative and Completely Positive Matrices

The convex cone of $n \times n$ completely positive (CPP) matrices and its dual cone of copositive matrices arise in several areas of applied mathematics, including optimization. Every CPP matrix is doubly nonnegative (DNN), i.e., positive semidefinite and component-wise nonnegative, and it is known that, for $n \le 4$ only, every DNN matrix is CPP. … Read more

A novel particle swarm optimizer hybridized with extremal optimization

Particle swarm optimization (PSO) has received increasing interest from the optimization community due to its simplicity in implementation and its inexpensive computational overhead. However, PSO has premature convergence, especially in complex multimodal functions. Extremal Optimization (EO) is a recently developed local-search heuristic method and has been successfully applied to a wide variety of hard optimization … Read more

ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions

We present a new derivative-free algorithm, ORBIT, for unconstrained local optimization of computationally expensive functions. A trust-region framework using interpolating Radial Basis Function (RBF) models is employed. The RBF models considered often allow ORBIT to interpolate nonlinear functions using fewer function evaluations than the polynomial models considered by present techniques. Approximation guarantees are obtained by … Read more

Extended Barzilai-Borwein method for unconstrained minimization problems

In 1988, Barzilai and Borwein presented a new choice of step size for the gradient method for solving unconstrained minimization problems. Their method aimed to accelerate the convergence of the steepest descent method. The Barzilai-Borwein method requires few storage locations and inexpensive computations. Therefore, several authors have paid attention to the Barzilai-Borwein method and have … Read more

A computational study of the use of an optimization-based method for simulating large multibody systems

The present work aims at comparing the performance of several quadratic programming (QP) solvers for simulating large-scale frictional rigid-body systems. Traditional time-stepping schemes for simulation of multibody systems are formulated as linear complementarity problems (LCPs) with copositive matrices. Such LCPs are generally solved by means of Lemketype algorithms and solvers such as the PATH solver … Read more

Large-Scale Parallel Multibody Dynamics with Frictional Contact on the Graphical Processing Unit

In the context of simulating the frictional contact dynamics of large systems of rigid bodies, this paper reviews a novel method for solving large cone complementarity problems by means of a fixed-point iteration algorithm. The method is an extension of the Gauss-Seidel and Gauss-Jacobimethods with overrelaxation for symmetric convex linear complementarity problems. Convergent under fairly … Read more

A Matrix-free Algorithm for Equality Constrained Optimization Problems with Rank-deficient Jacobians

We present a line search algorithm for large-scale constrained optimization that is robust and efficient even for problems with (nearly) rank-deficient Jacobian matrices. The method is matrix-free (i.e., it does not require explicit storage or factorizations of derivative matrices), allows for inexact step computations, and is applicable for nonconvex problems. The main components of the … Read more