Chance-constrained optimization via randomization: feasibility and optimality

In this paper we study the link between a semi-infinite chance-constrained optimization problem and its randomized version, i.e. the problem obtained by sampling a finite number of its constraints. Extending previous results on the feasibility of randomized convex programs, we establish here the feasibility of the solution obtained after the elimination of a portion of … Read more

Test problems for quasi-satellite packing: Cylinders packing with behavior constraints and all the optimal solutions known

This paper presents seven test problems with all the optimal solutions known on the background of the layout optimization problem of a simplified international communication satellite module, aiming to evaluate the algorithm performance on solving three-dimensional packing problem with behavior constraints. The test problems are constructed in the following step. First, place N (=217) cylinders … Read more

Locating Restricted Facilities on Binary Maps

In this paper we consider several facility location problems with applications to cost and social welfare optimization, when the area map is encoded as a binary (0,1) mxn matrix. We present algorithmic solutions for all the problems. Some cases are too particular to be used in practical situations, but they are at least a starting … Read more

Inferring Company Structure from Limited Available Information

In this paper we present several algorithmic techniques for inferring the structure of a company when only a limited amount of information is available. We consider problems with two types of inputs: the number of pairs of employees with a given property and restricted information about the hierarchical structure of the company. We provide dynamic … Read more

Progressive Hedging Innovations for a Class of Stochastic Resource Allocation Problems

Progressive hedging (PH) is a scenario-based decomposition technique for solving stochastic programs. While PH has been successfully applied to a number of problems, a variety of issues arise when implementing PH in practice, especially when dealing with very difficult or large-scale mixed-integer problems. In particular, decisions must be made regarding the value of the penalty … Read more

Primal-dual interior-point methods with asymmetric barrier

In this paper we develop several polynomial-time interior-point methods (IPM) for solving nonlinear primal-dual conic optimization problem. We assume that the barriers for the primal and the dual cone are not conjugate. This broken symmetry does not allow to apply the standard primal-dual IPM. However, we show that in this situation it is also possible … Read more

On Verifiable Sufficient Conditions for Sparse Signal Recovery via L1 Minimization

We propose novel necessary and sufficient conditions for a sensing matrix to be “s-good” — to allow for exact L1-recovery of sparse signals with s nonzero entries when no measurement noise is present. Then we express the error bounds for imperfect L1-recovery (nonzero measurement noise, nearly s-sparse signal, near-optimal solution of the optimization problem yielding … Read more

Impulsive Optimal Control of Hybrid Finite-Dimensional Lagrangian Systems

The scope of this dissertation addresses numerical and theoretical issues in the impulsive control of hybrid finite-dimensional Lagrangian systems. In order to treat these aspects, a modeling framework is presented based on the measure-differential inclusion representation of the Lagrangian dynamics. The main advantage of this representation is that it enables the incorporation of set-valued force … Read more

Lecture notes: Semidefinite programs and harmonic analysis

Lecture notes for the tutorial at the workshop HPOPT 2008 – 10th International Workshop on High Performance Optimization Techniques (Algebraic Structure in Semidefinite Programming), June 11th to 13th, 2008, Tilburg University, The Netherlands. CitationarXiv:0809.2017v1 [math.OC]ArticleDownload View PDF

On mixing inequalities: rank, closure and cutting plane proofs

We study the mixing inequalities which were introduced by Gunluk and Pochet (2001). We show that a mixing inequality which mixes n MIR inequalities has MIR rank at most n if it is a type I mixing inequality and at most n-1 if it is a type II mixing inequality. We also show that these … Read more