Algorithmic aspects of sums of hermitian squares of noncommutative polynomials

This paper presents an algorithm and its implementation in the software package NCSOStools for finding sums of hermitian squares and commutators decompositions for polynomials in noncommuting variables. The algorithm is based on noncommutative analogs of the classical Gram matrix method and the Newton polytope method, which allows us to use semidefinite programming. Throughout the paper … Read more

Inexact Restoration method for Derivative-Free Optimization with smooth constraints

A new method is introduced for solving constrained optimization problems in which the derivatives of the constraints are available but the derivatives of the objective function are not. The method is based on the Inexact Restoration framework, by means of which each iteration is divided in two phases. In the first phase one considers only … Read more

Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. CitationPublished as Inria Research report RR-7796, November 2011.ArticleDownload View PDF

Scheduling co-operating stacking cranes with predetermined container sequences

Crane scheduling in container terminals is known as a difficult optimization problem that has become even more challenging in recent years with the proliferation of multi-gantry automated stacking cranes. In this paper we present an efficient algorithm solving a subproblem arising in this context, namely deciding the priority of cranes after transportation tasks have been … Read more

Sobolev Seminorm of Quadratic Functions with Applications to Derivative-Free Optimization

This paper studies the $H^1$ Sobolev seminorm of quadratic functions. The research is motivated by the least-norm interpolation that is widely used in derivative-free optimization. We express the $H^1$ seminorm of a quadratic function explicitly in terms of the Hessian and the gradient when the underlying domain is a ball. The seminorm gives new insights … Read more

Hybridizations of GRASP with path-relinking

A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. GRASP heuristics are multistart procedures which apply local search to a set of starting solutions generated with a randomized greedy algorithm or semi-greedy method. The best local optimum found over the iterations is returned as the heuristic solution. Path-relinking is a search … Read more

Robust inversion, dimensionality reduction, and randomized sampling

We consider a class of inverse problems in which the forward model is the solution operator to linear ODEs or PDEs. This class admits several dimensionality-reduction techniques based on data averaging or sampling, which are especially useful for large-scale problems. We survey these approaches and their connection to stochastic optimization. The data-averaging approach is only … Read more

Global Optimization of Mixed-Integer Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-Concave Relaxations

We propose a deterministic global optimization approach, whose novel contributions are rooted in the edge-concave and piecewise-linear underestimators, to address nonconvex mixed-integer quadratically-constrained quadratic programs (MIQCQP) to epsilon-global optimality. The facets of low-dimensional (n < 4) edge-concave aggregations dominating the termwise relaxation of MIQCQP are introduced at every node of a branch-and-bound tree. Concave multivariable ... Read more

A globally and R-linearly convergent hybrid HS and PRP method and its inexact version with applications

A hybrid HS and PRP type conjugate gradient method for smooth optimization is presented, which reduces to the classical RPR or HS method if exact linear search is used and converges globally and R-linearly for nonconvex functions with an inexact backtracking line search under standard assumption. An inexact version of the proposed method which admits … Read more

Robustifying Convex Risk Measures: A Non-Parametric Approach

We introduce a framework for robustifying portfolio selection problems with respect to ambiguity in the distribution of the random asset losses. In particular, we are interested in convex, version independent risk measures. To robustify these risk measures, we use an ambiguity set which is defined as a neighborhood around a reference probability measure which represents … Read more