CONVEX GEOMETRY OF THE GENERALIZED MATRIX-FRACTIONAL FUNCTION

Generalized matrix-fractional (GMF) functions are a class of matrix support functions introduced by Burke and Hoheisel as a tool for unifying a range of seemingly divergent matrix optimization problems associated with inverse problems, regularization and learning. In this paper we dramatically simplify the support function representation for GMF functions as well as the representation of … Read more

A semi-analytical approach for the positive semidefinite Procrustes problem

The positive semidefinite Procrustes (PSDP) problem is the following: given rectangular matrices $X$ and $B$, find the symmetric positive semidefinite matrix $A$ that minimizes the Frobenius norm of $AX-B$. No general procedure is known that gives an exact solution. In this paper, we present a semi-analytical approach to solve the PSDP problem. First, we characterize … Read more

Comparison of Lasserre’s measure–based bounds for polynomial optimization to bounds obtained by simulated annealing

We consider the problem of minimizing a continuous function f over a compact set K. We compare the hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-885] to bounds that may be obtained from simulated annealing. We show that, when f is a polynomial and K a convex body, … Read more

Optimal Control of MDP’s with Unbounded Cost on Infinite Horizon

We use Markov risk measures to formulate a risk averse version of a total cost problem on a controlled Markov process in infinite horizon. The one step costs are in $L^1$ but not necessarily bounded. We derive the conditions for the existence of the optimal strategies and present the robust dynamic programming equations. We illustrate … Read more

A successive linear programming algorithm with non-linear time series for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation based on affine decision rules for the reservoir management problem. Our approach seeks to find a release schedule that balances flood control and power generation objectives while considering realistic operating conditions as well as variable water head. To deal with the non-convexity introduced by the variable water … Read more

An extension of Yuan’s Lemma and its applications in optimization

We prove an extension of Yuan’s Lemma to more than two matrices, as long as the set of matrices has rank at most 2. This is used to generalize the main result of [A. Baccari and A. Trad. On the classical necessary second-order optimality conditions in the presence of equality and inequality constraints. SIAM J. … Read more

Exploiting Negative Curvature in Deterministic and Stochastic Optimization

This paper addresses the question of whether it can be beneficial for an optimization algorithm to follow directions of negative curvature. Although some prior work has established convergence results for algorithms that integrate both descent and negative curvature directions, there has not yet been numerical evidence showing that such methods offer significant performance improvements. In … Read more

Algorithmic Differentiation for Piecewise Smooth Functions: A Case Study for Robust Optimization

This paper presents a minimization method for Lipschitz continuous, piecewise smooth objective functions based on algorithmic differentiation (AD). We assume that all nondifferentiabilities are caused by abs(), min(), and max(). The optimization method generates successively piecewise linearizations in abs-normal form and solves these local subproblems by exploiting the resulting kink structure. Both, the generation of … Read more

An Augmented Lagrangian Proximal Alternating Method for Sparse Discrete Optimization Problems

In this paper, an augmented Lagrangian proximal alternating (ALPA) method is proposed for two class of large-scale sparse discrete constrained optimization problems in which a sequence of augmented Lagrangian subproblems are solved by utilizing proximal alternating linearized minimization framework and sparse projection techniques. Under the Mangasarian-Fromovitz and the basic constraint qualification, we show that any … Read more

Foundations of gauge and perspective duality

Common numerical methods for constrained convex optimization are predicated on efficiently computing nearest points to the feasible region. The presence of a design matrix in the constraints yields feasible regions with more complex geometries. When the functional components are gauges, there is an equivalent optimization problem—the gauge dual– where the matrix appears only in the … Read more