Cut-Sharing Across Trees and Efficient Sequential Sampling for SDDP with Uncertainty in the RHS

In this paper we show that when a multistage stochastic problem with stage-wise independent realizations has only RHS uncertainties, solving one tree provides a valid lower bound for all trees with the same number of scenarios per stage without any additional computational effort. The only change to the traditional algorithm is the way cuts are … Read more

Characterization of an Anomalous Behavior of a Practical Smoothing Technique

A practical smoothing method was analyzed and tested against state-of-the-art solvers for some non-smooth optimization problems in [BSS20a; BSS20b]. This method can be used to smooth the value functions and solution mappings of fully parameterized convex problems under mild conditions. In general, the smoothing of the value function lies from above the true value function … Read more

The block mutual coherence property condition for signal recovery

Compressed sensing shows that a sparse signal can stably be recovered from incomplete linear measurements. But, in practical applications, some signals have additional structure, where the nonzero elements arise in some blocks. We call such signals as block-sparse signals. In this paper, the $\ell_2/\ell_1-\alpha\ell_2$ minimization method for the stable recovery of block-sparse signals is investigated. … Read more

Mathematical Programming formulations for the Alternating Current Optimal Power Flow problem

Power flow refers to the injection of power on the lines of an electrical grid, so that all the injections at the nodes form a consistent flow within the network. Optimality, in this setting, is usually intended as the minimization of the cost of generating power. Current can either be direct or alternating: while the … Read more

Priority Based Flow Improvement with Intermediate Storage

Every models in the network flow theory aim to increase flow value from the sources to the sinks and reduce time or cost satisfying the capacity and flow conservation constraints. Recently, the network flow model without flow conservation constraints at the intermediate nodes has been investigated by Pyakurel and Dempe \cite{pyadem:2019}. In this model, if … Read more

Improved optimization models for potential-driven network flow problems via ASTS orientations

The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of … Read more

On a generalization of the Chvatal-Gomory closure

Many practical integer programming problems involve variables with one or two-sided bounds. Dunkel and Schulz (2012) considered a strengthened version of Chvatal-Gomory (CG) inequalities that use 0-1 bounds on variables, and showed that the set of points in a rational polytope that satisfy all these strengthened inequalities is a polytope. Recently, we generalized this result … Read more

A Branch-and-Check Approach for the Tourist Trip Design Problem with Rich Constraints

The tourist trip design problem is an extension of the orienteering problem applied to tourism. The problem consists in selecting a subset of locations to visit from among a larger set while maximizing the benefit for the tourist. The benefit is given by the sum of the rewards collected at each location visited. We consider … Read more

Formulations and Valid Inequalities for Optimal Black Start Allocation in Power Systems

The restoration of a power system after an extended blackout starts around units with enhanced technical capabilities, referred to as black start units (BSUs). We examine the planning problem of optimally allocating these units on the grid subject to a budget constraint. We present a mixed integer programming model based on current literature in power … Read more