Inverse Mixed Integer Optimization: Polyhedral Insights and Trust Region Methods

Inverse optimization – determining parameters of an optimization problem that render a given solution optimal – has received increasing attention in recent years. While significant inverse optimization literature exists for convex optimization problems, there have been few advances for discrete problems, despite the ubiquity of applications that fundamentally rely on discrete decision-making. In this paper, … Read more

Spatially Adaptive Regularization in Image Segmentation

We modify the total-variation-regularized image segmentation model proposed by Chan, Esedoglu and Nikolova [SIAM Journal on Applied Mathematics 66, 2006] by introducing local regularization that takes into account spatial image information. We propose some techniques for defining local regularization parameters, based on the cartoon-texture decomposition of the given image, on the mean and median filters, … Read more

Computational advances in polynomial optimization: RAPOSa, a freely available global solver

In this paper we introduce RAPOSa, a global optimization solver specifically designed for (continuous) polynomial programming problems with box-constrained variables. Written entirely in C++, RAPOSa is based on the Reformulation-Linearization Technique developed by Sherali and Tuncbilek (1992) and subsequently improved in Sherali et al. (2012a), Sherali et al. (2012b) and Dalkiran and Sherali (2013). We … Read more

Convexifying Multilinear Sets with Cardinality Constraints: Structural Properties, Nested Case and Extensions

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard problem. The set of solutions of the standard linearization of this problem is called the multilinear set. We study a cardinality constrained version of it with upper and lower bounds on the number of nonzero variables. We call the set of … Read more

Strategic Positioning of Empty Containers and Minimising Backhauls in Inland Supply Chain Network

An end-to-end supply chain operation for inland logistics requires coordination and planning among various operations of import pickups, export delivery and empty container positioning for reuse and evacuations of unused containers through the ports. A major business goal of all these operations focuses on reducing the transport costs by utilizing maximum network capacity across active … Read more

Equilibrium Oil Market Share under the COVID-19 Pandemic

Equilibrium models for energy markets under uncertain demand and supply have attracted considerable attentions. This paper focuses on modelling crude oil market share under the COVID-19 pandemic using two-stage stochastic equilibrium. We describe the uncertainties in the demand and supply by random variables and provide two types of production decisions (here-and-now and wait-and-see). The here-and-now … Read more

Branch-and-Bound Solves Random Binary IPs in Polytime

Branch-and-bound is the workhorse of all state-of-the-art mixed integer linear programming (MILP) solvers. These implementations of branch-and-bound typically use variable branching, that is, the child nodes are obtained by fixing some variable to an integer value v in one node and to v + 1 in the other node. Even though modern MILP solvers are … Read more

A Subspace Acceleration Method for Minimization Involving a Group Sparsity-Inducing Regularizer

We consider the problem of minimizing an objective function that is the sum of a convex function and a group sparsity-inducing regularizer. Problems that integrate such regularizers arise in modern machine learning applications, often for the purpose of obtaining models that are easier to interpret and that have higher predictive accuracy. We present a new … Read more

An Orthogonalization-free Parallelizable Framework for All-electron Calculations in Density Functional Theory

All-electron calculations play an important role in density functional theory, in which improving computational efficiency is one of the most needed and challenging tasks. In the model formulations, both nonlinear eigenvalue problem and total energy minimization problem pursue orthogonal solutions. Most existing algorithms for solving these two models invoke orthogonalization process either explicitly or implicitly … Read more

A conjugate directions-type procedure for quadratic multiobjective optimization

We propose an extension of the real-valued conjugate directions method for unconstrained quadratic multiobjective problems. As in the single-valued counterpart, the procedure requires a set of directions that are simultaneously conjugate with respect to the positive definite matrices of all quadratic objective components. Likewise, the multicriteria version computes the steplength by means of the unconstrained … Read more