What is the optimal cutoff surface for ore bodies with more than one mineral?

In mine planning problems, cutoff grade optimization defines a threshold at every time period such that material above this value is processed, and the rest is considered waste. In orebodies with multiple minerals, which occur in practice, the natural extension is to consider a cutoff surface. We show that in two dimensions the optimal solution … Read more

First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition

The well known constant rank constraint qualification [Math. Program. Study 21:110–126, 1984] introduced by Janin for nonlinear programming has been recently extended to a conic context by exploiting the eigenvector structure of the problem. In this paper we propose a more general and geometric approach for defining a new extension of this condition to the … Read more

An extension of the Reformulation-Linearization Technique to nonlinear optimization

We introduce a novel Reformulation-Perspectification Technique (RPT) to obtain convex approximations of nonconvex continuous optimization problems. RPT consists of two steps, those are, a reformulation step and a perspectification step. The reformulation step generates redundant nonconvex constraints from pairwise multiplication of the existing constraints. The perspectification step then convexifies the nonconvex components by using perspective … Read more

The Promise of EV-Aware Multi-Period OPF Problem: Cost and Emission Benefits

In this paper, we study the Multi-Period Optimal Power Flow problem (MOPF) with electric vehicles (EV) under emission considerations. We integrate three different real-world datasets: household electricity consumption, marginal emission factors, and EV driving profiles. We present a systematic solution approach based on second-order cone programming to find globally optimal solutions for the resulting nonconvex … Read more

Quantifying uncertainty with ensembles of surrogates for blackbox optimization

This work is in the context of blackbox optimization where the functions defining the problem are expensive to evaluate and where no derivatives are available. A tried and tested technique is to build surrogates of the objective and the constraints in order to conduct the optimization at a cheaper computational cost. This work proposes different … Read more

Regularized quasi-monotone method for stochastic optimization

We adapt the quasi-monotone method from Nesterov, Shikhman (2015) for composite convex minimization in the stochastic setting. For the proposed numerical scheme we derive the optimal convergence rate in terms of the last iterate, rather than on average as it is standard for subgradient methods. The theoretical guarantee for individual convergence of the regularized quasi-monotone … Read more

Inexact Sequential Quadratic Optimization for Minimizing a Stochastic Objective Function Subject to Deterministic Nonlinear Equality Constraints

An algorithm is proposed, analyzed, and tested experimentally for solving stochastic optimization problems in which the decision variables are constrained to satisfy equations defined by deterministic, smooth, and nonlinear functions. It is assumed that constraint function and derivative values can be computed, but that only stochastic approximations are available for the objective function and its … Read more

Polyhedral Analysis of a Polytope from a Service Center Location Problem with a Special Decision-Dependent Customer Demand

This paper establishes and analyzes a service center location model with a simple but novel decision-dependent demand induced from a maximum attraction principle. The model formulations are investigated in the distributionally-robust optimization framework for the capacitated and uncapacitated cases. A statistical model that is based on the maximum attraction principle for estimating customer demand and … Read more

A framework for convex-constrained monotone nonlinear equations and its special cases

This work refers to methods for solving convex-constrained monotone nonlinear equations. We first propose a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections. The global convergence of the framework is established under appropriate assumptions and some examples of methods which fall into this framework … Read more

A study of Liu-Storey conjugate gradient methods for vector optimization

This work presents a study of Liu-Storey (LS) nonlinear conjugate gradient (CG) methods to solve vector optimization problems. Three variants of the LS-CG method originally designed to solve single-objective problems are extended to the vector setting. The first algorithm restricts the LS conjugate parameter to be nonnegative and use a sufficiently accurate line search satisfying … Read more