The best approximation pair problem relative to two subsets in a normed space

In the classical best approximation pair (BAP) problem, one is given two nonempty, closed, convex and disjoint subsets in a finite- or an infinite-dimensional Hilbert space, and the goal is to find a pair of points, each from each subset, which realizes the distance between the subsets. This problem, which has a long history, has … Read more

An MILP-Based Solution Scheme for Factored and Robust Factored Markov Decision Processes

Factored Markov decision processes (MDPs) are a prominent paradigm within the artificial intelligence community for modeling and solving large-scale MDPs whose rewards and dynamics decompose into smaller, loosely interacting components. Through the use of dynamic Bayesian networks and context-specific independence, factored MDPs can achieve an exponential reduction in the state space of an MDP and … Read more

Applying random coordinate descent in a probability maximization scheme

Gradient computation of multivariate distribution functions calls for considerable effort. A standard procedure is component-wise computation, hence coordinate descent is an attractive choice. This paper deals with constrained convex problems. We apply random coordinate descent in an approximation scheme that is an inexact cutting-plane method from a dual viewpoint. We present convergence proofs and a … Read more

Learning-to-Optimize with PAC-Bayesian Guarantees: Theoretical Considerations and Practical Implementation

We use the PAC-Bayesian theory for the setting of learning-to-optimize. To the best of our knowledge, we present the first framework to learn optimization algorithms with provable generalization guarantees (PAC-Bayesian bounds) and explicit trade-off between convergence guarantees and convergence speed, which contrasts with the typical worst-case analysis. Our learned optimization algorithms provably outperform related ones … Read more

Robust Drone Delivery with Weather Information

Problem definition: Drone delivery has recently garnered significant attention due to its potential for faster delivery at a lower cost than other delivery options. When scheduling drones from a depot for delivery to various destinations, the dispatcher must take into account the uncertain wind conditions, which affect the delivery times of drones to their destinations, … Read more

Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation

We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated … Read more

Horoballs and the subgradient method

To explore convex optimization on Hadamard spaces, we consider an iteration in the style of a subgradient algorithm. Traditionally, such methods assume that the underlying spaces are manifolds and that the objectives are geodesically convex: the methods are described using tangent spaces and exponential maps. By contrast, our iteration applies in a general Hadamard space, … Read more

Distributionally Robust Optimization with Decision-Dependent Information Discovery

We study two-stage distributionally robust optimization (DRO) problems with decision-dependent information discovery (DDID) wherein (a portion of) the uncertain parameters are revealed only if an (often costly) investment is made in the first stage. This class of problems finds many important applications in selection problems (e.g., in hiring, project portfolio optimization, or optimal sensor location). … Read more

Network Flow Models for Robust Binary Optimization with Selective Adaptability

Adaptive robust optimization problems have received significant attention in recent years, but remain notoriously difficult to solve when recourse decisions are discrete in nature. In this paper, we propose new reformulation techniques for adaptive robust binary optimization (ARBO) problems with objective uncertainty. Without loss of generality, we focus on ARBO problems with “selective adaptability”, a … Read more