Optimal error bounds in the absence of constraint qualifications with applications to the p-cones and beyond

We prove tight Hölderian error bounds for all p-cones. Surprisingly, the exponents differ in several ways from those that have been previously conjectured; moreover, they illuminate p-cones as a curious example of a class of objects that possess properties in 3 dimensions that they do not in 4 or more. Using our error bounds, we … Read more

Error bounds, facial residual functions and applications to the exponential cone

We construct a general framework for deriving error bounds for conic feasibility problems. In particular, our approach allows one to work with cones that fail to be amenable or even to have computable projections, two previously challenging barriers. For the purpose, we first show how error bounds may be constructed using objects called one-step facial … Read more

Amenable cones are particularly nice

Amenability is a geometric property of convex cones that is stronger than facial exposedness and assists in the study of error bounds for conic feasibility problems. In this paper we establish numerous properties of amenable cones, and investigate the relationships between amenability and other properties of convex cones, such as niceness and projectional exposure. We … Read more

Convergence analysis under consistent error bounds

We introduce the notion of consistent error bound functions which provides a unifying framework for error bounds for multiple convex sets. This framework goes beyond the classical Lipschitzian and Holderian error bounds and includes logarithmic and entropic error bound found in the exponential cone. It also includes the error bounds obtainable under the theory of … Read more

A simplified treatment of Ramana’s exact dual for semidefinite programming

In semidefinite programming the dual may fail to attain its optimal value and there could be a duality gap, i.e., the primal and dual optimal values may differ. In a striking paper, Ramana proposed a polynomial size extended dual that does not have these deficiencies and yields a number of fundamental results in complexity theory. … Read more

A Limiting Analysis on Regularization of Singular SDP and its Implication to Infeasible Interior-point Algorithms

We consider primal-dual pairs of semidefinite programs and assume that they are ill-posed, i.e., both primal and dual are either weakly feasible or weakly infeasible. Under such circumstances, strong duality may break down and the primal and dual might have a nonzero duality gap. Nevertheless, there are arbitrary small perturbations to the problem data which … Read more

Generalized subdifferentials of spectral functions over Euclidean Jordan algebras

This paper is devoted to the study of generalized subdifferentials of spectral functions over Euclidean Jordan algebras. Spectral functions appear often in optimization problems playing the role of “regularizer”, “barrier”, “penalty function” and many others. We provide formulae for the regular, approximate and horizon subdifferentials of spectral functions. In addition, under local lower semicontinuity, we … Read more

An oracle-based projection and rescaling algorithm for linear semi-infinite feasibility problems and its application to SDP and SOCP

We point out that Chubanov’s oracle-based algorithm for linear programming [5] can be applied almost as it is to linear semi-infinite programming (LSIP). In this note, we describe the details and prove the polynomial complexity of the algorithm based on the real computation model proposed by Blum, Shub and Smale (the BSS model) which is … Read more

The automorphism group and the non-self-duality of p-cones

In this paper, we determine the automorphism group of the p-cones (p\neq 2) in dimension greater than two. In particular, we show that the automorphism group of those p-cones are the positive scalar multiples of the generalized permutation matrices that fix the main axis of the cone. Next, we take a look at a problem … Read more

Amenable cones: error bounds without constraint qualifications

We provide a framework for obtaining error bounds for linear conic problems without assuming constraint qualifications or regularity conditions. The key aspects of our approach are the notions of amenable cones and facial residual functions. For amenable cones, it is shown that error bounds can be expressed as a composition of facial residual functions. The … Read more