Complexity and performance of an Augmented Lagrangian algorithm

Algencan is a well established safeguarded Augmented Lagrangian algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez and M. L. Schuverdt, On Augmented Lagrangian methods with general lower-level constraints, SIAM Journal on Optimization 18, pp. 1286-1309, 2008]. Complexity results that report its worst-case behavior in terms of iterations and evaluations of functions and … Read more

An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem

In this work we present an Augmented Lagrangian algorithm for nonlinear semidefinite problems (NLSDPs), which is a natural extension of its consolidated counterpart in nonlinear programming. This method works with two levels of constraints; one that is penalized and other that is kept within the subproblems. This is done in order to allow exploiting the … Read more

Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact

In many cases in which one wishes to minimize a complicated or expensive function, it is convenient to employ cheap approximations, at least when the current approximation to the solution is poor. Adequate strategies for deciding the accuracy desired at each stage of optimization are crucial for the global convergence and overall efficiency of the … Read more

Cubic Regularization Method based on Mixed Factorizations for Unconstrained Minimization

Newton’s method for unconstrained optimization, subject to proper regularization or special trust-region procedures, finds first-order stationary points with precision $\varepsilon$ employing, at most, $O(\varepsilon^{-3/2})$ functional and derivative evaluations. However, the computer work per iteration of the best-known implementations may need several factorizations per iteration or may use rather expensive matrix decompositions. In this paper, we … Read more

On the use of third-order models with fourth-order regularization for unconstrained optimization

In a recent paper, it was shown that, for the smooth unconstrained optimization problem, worst-case evaluation complexity $O(\epsilon^{-(p+1)/p})$ may be obtained by means of algorithms that employ sequential approximate minimizations of p-th order Taylor models plus (p + 1)-th order regularization terms. The aforementioned result, which assumes Lipschitz continuity of the p-th partial derivatives, generalizes … Read more

Large-scale packing of ellipsoids

The problem of packing ellipsoids in the n-dimensional space is considered in the present work. The proposed approach combines heuristic techniques with the resolution of recently introduced nonlinear programming models in order to construct solutions with a large number of ellipsoids. Numerical experiments illustrate that the introduced approach delivers good quality solutions with a computational … Read more

Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points

Augmented Lagrangian methods with convergence to second-order stationary points in which any constraint can be penalized or carried out to the subproblems are considered in this work. The resolution of each subproblem can be done by any numerical algorithm able to return approximate second-order stationary points. The developed global convergence theory is stronger than the … Read more

Quadratic regularization with cubic descent for unconstrained optimization

Cubic-regularization and trust-region methods with worst case first-order complexity $O(\varepsilon^{-3/2})$ and worst-case second-order complexity $O(\varepsilon^{-3})$ have been developed in the last few years. In this paper it is proved that the same complexities are achieved by means of a quadratic regularization method with a cubic sufficient-descent condition instead of the more usual predicted-reduction based descent. … Read more

Sequential equality-constrained optimization for nonlinear programming

A new method is proposed for solving optimization problems with equality constraints and bounds on the variables. In the spirit of Sequential Quadratic Programming and Sequential Linearly-Constrained Programming, the new method approximately solves, at each iteration, an equality-constrained optimization problem. The bound constraints are handled in outer iterations by means of an Augmented Lagrangian scheme. … Read more

Evaluation complexity for nonlinear constrained optimization using unscaled KKT conditions and high-order models

The evaluation complexity of general nonlinear, possibly nonconvex,constrained optimization is analyzed. It is shown that, under suitable smoothness conditions, an $\epsilon$-approximate first-order critical point of the problem can be computed in order $O(\epsilon^{1-2(p+1)/p})$ evaluations of the problem’s function and their first $p$ derivatives. This is achieved by using a two-phases algorithm inspired by Cartis, Gould, … Read more