A unified analysis of a class of proximal bundle methods for solving hybrid convex composite optimization problems

This paper presents a proximal bundle (PB) framework based on a generic bundle update scheme for solving the hybrid convex composite optimization (HCCO) problem and establishes a common iteration-complexity bound for any variant belonging to it. As a consequence, iteration-complexity bounds for three PB variants based on different bundle update schemes are obtained in the … Read more

FISTA and Extensions – Review and New Insights

The purpose of this technical report is to review the main properties of an accelerated composite gradient (ACG) method commonly referred to as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). In addition, we state a version of FISTA for solving both convex and strongly convex composite minimization problems and derive its iteration complexities to generate iterates … Read more

Average Curvature FISTA for Nonconvex Smooth Composite Optimization Problems

A previous authors’ paper introduces an accelerated composite gradient (ACG) variant, namely AC-ACG, for solving nonconvex smooth composite optimization (N-SCO) problems. In contrast to other ACG variants, AC-ACG estimates the local upper curvature of the N-SCO problem by using the average of the observed upper-Lipschitz curvatures obtained during the previous iterations, and uses this estimation … Read more

Iteration-complexity of a proximal augmented Lagrangian method for solving nonconvex composite optimization problems with nonlinear convex constraints

This paper proposes and analyzes a proximal augmented Lagrangian (NL-IAPIAL) method for solving smooth nonconvex composite optimization problems with nonlinear K-convex constraints, i.e., the constraints are convex with respect to the order given by a closed convex cone K. Each NL-IAPIAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite … Read more

Iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian method based on the classical Lagrangian function and a full Lagrange multiplier update

This paper establishes the iteration-complexity of an inner accelerated inexact proximal augmented Lagrangian (IAPIAL) method for solving linearly constrained smooth nonconvex composite optimization problems which is based on the classical Lagrangian function and, most importantly, performs a full Lagrangian multiplier update, i.e., no shrinking factor is incorporated on it. More specifically, each IAPIAL iteration consists … Read more

Accelerated Inexact Composite Gradient Methods for Nonconvex Spectral Optimization Problems

This paper presents two inexact composite gradient methods, one inner accelerated and another doubly accelerated, for solving a class of nonconvex spectral composite optimization problems. More specifically, the objective function for these problems is of the form f_1 + f_2 + h where f_1 and f_2 are differentiable nonconvex matrix functions with Lipschitz continuous gradients, … Read more

Iteration-complexity of an inexact proximal accelerated augmented Lagrangian method for solving linearly constrained smooth nonconvex composite optimization problems

This paper proposes and establishes the iteration-complexity of an inexact proximal accelerated augmented Lagrangian (IPAAL) method for solving linearly constrained smooth nonconvex composite optimization problems. Each IPAAL iteration consists of inexactly solving a proximal augmented Lagrangian subproblem by an accelerated composite gradient (ACG) method followed by a suitable Lagrange multiplier update. It is shown that … Read more

Inexact cuts in SDDP applied to multistage stochastic nondifferentiable problems

In [13], an Inexact variant of Stochastic Dual Dynamic Programming (SDDP) called ISDDP was introduced which uses approximate (instead of exact with SDDP) primal dual solutions of the problems solved in the forward and backward passes of the method. That variant of SDDP was studied in [13] for linear and for differentiable nonlinear Multistage Stochastic … Read more

A proximal bundle variant with optimal iteration-complexity for a large range of prox stepsizes

This paper presents a proximal bundle variant, namely, the relaxed proximal bundle (RPB) method, for solving convex nonsmooth composite optimization problems. Like other proximal bundle variants, RPB solves a sequence of prox bundle subproblems whose objective functions are regularized composite cutting-plane models. Moreover, RPB uses a novel condition to decide whether to perform a serious … Read more

Stochastic Dynamic Cutting Plane for multistage stochastic convex programs

We introduce StoDCuP (Stochastic Dynamic Cutting Plane), an extension of the Stochastic Dual Dynamic Programming (SDDP) algorithm to solve multistage stochastic convex optimization problems. At each iteration, the algorithm builds lower affine functions not only for the cost-to-go functions, as SDDP does, but also for some or all nonlinear cost and constraint functions. We show … Read more