GALINI: An extensible mixed-integer quadratically-constrained optimization solver

We present GALINI, an open source solver for nonconvex mixed-integer quadratically-constrained quadratic programs formulated with the Python algebraic modeling library Pyomo. GALINI uses Pyomo to represent optimization problems and leverages the existing library ecosystem to implement different parts of the solver. GALINI includes a generic branch \& bound algorithm that can be use develop new … Read more

Partial Lasserre relaxation for sparse Max-Cut

A common approach to solve or find bounds of polynomial optimization problems like Max-Cut is to use the first level of the Lasserre hierarchy. Higher levels of the Lasserre hierarchy provide tighter bounds, but solving these relaxations is usually computationally intractable. We propose to strengthen the first level relaxation for sparse Max-Cut problems using constraints … Read more

A disjunctive cut strengthening technique for convex MINLP

Generating polyhedral outer approximations and solving mixed-integer linear relaxations remains one of the main approaches for solving convex mixed-integer nonlinear programming (MINLP) problems. There are several algorithms based on this concept, and the efficiency is greatly affected by the tightness of the outer approximation. In this paper, we present a new framework for strengthening cutting … Read more

Scoring positive semidefinite cutting planes for quadratic optimization via trained neural networks

Semidefinite programming relaxations complement polyhedral relaxations for quadratic optimization, but global optimization solvers built on polyhedral relaxations cannot fully exploit this advantage. This paper develops linear outer-approximations of semidefinite constraints that can be effectively integrated into global solvers. The difference from previous work is that our proposed cuts are (i) sparser with respect to the … Read more

A multilevel analysis of the Lasserre hierarchy

This paper analyzes the relation between different orders of the Lasserre hierarchy for polynomial optimization (POP). Although for some cases solving the semidefinite programming relaxation corresponding to the first order of the hierarchy is enough to solve the underlying POP, other problems require sequentially solving the second or higher orders until a solution is found. … Read more

Satisfiability Modulo Theories for Process Systems Engineering

Process systems engineers have long recognized the importance of both logic and optimization for automated decision-making. But modern challenges in process systems engineering could strongly benefit from methodological contributions in computer science. In particular, we propose satisfiability modulo theories (SMT) for process systems engineering applications. We motivate SMT using a series of test beds and … Read more

QPLIB: A Library of Quadratic Programming Instances

This paper describes a new instance library for Quadratic Programming (QP), i.e., the family of continuous and (mixed)-integer optimization problems where the objective function, the constrains, or both are quadratic. QP is a very “varied” class of problems, comprising sub-classes of problems ranging from trivial to undecidable. Solution methods for QP are very diverse, ranging … Read more

Piecewise Parametric Structure in the Pooling Problem – from Sparse Strongly-Polynomial Solutions to NP-Hardness

The standard pooling problem is a NP-hard sub-class of non-convex quadratically-constrained optimization problems that commonly arises in process systems engineering applications. We take a parametric approach to uncovering topological structure and sparsity of the standard pooling problem in its p-formulation. The structure uncovered in this approach validates Professor Christodoulos A. Floudas’ intuition that pooling problems … Read more

Global Optimization of Mixed-Integer Quadratically-Constrained Quadratic Programs (MIQCQP) through Piecewise-Linear and Edge-Concave Relaxations

We propose a deterministic global optimization approach, whose novel contributions are rooted in the edge-concave and piecewise-linear underestimators, to address nonconvex mixed-integer quadratically-constrained quadratic programs (MIQCQP) to epsilon-global optimality. The facets of low-dimensional (n < 4) edge-concave aggregations dominating the termwise relaxation of MIQCQP are introduced at every node of a branch-and-bound tree. Concave multivariable ... Read more