Recursive McCormick Linearization of Multilinear Programs

Linear programming (LP) relaxations are widely employed in exact solution methods for multilinear programs (MLP). One example is the family of Recursive McCormick Linearization (RML) strategies, where bilinear products are substituted for artificial variables, which deliver a relaxation of the original problem when introduced together with concave and convex envelopes. In this article, we introduce … Read more

SDP-quality bounds via convex quadratic relaxations for global optimization of mixed-integer quadratic programs

We consider the global optimization of nonconvex mixed-integer quadratic programs with linear equality constraints. In particular, we present a new class of convex quadratic relaxations which are derived via quadratic cuts. To construct these quadratic cuts, we solve a separation problem involving a linear matrix inequality with a special structure that allows the use of … Read more

Stability Analysis of Discrete-Time Linear Complementarity Systems

A Discrete-Time Linear Complementarity System (DLCS) is a dynamical system in discrete time whose state evolution is governed by linear dynamics in states and algebraic variables that solve a Linear Complementarity Problem (LCP). A DLCS is the hybrid dynamical system that is the discrete-time counterpart of the well-known Linear Complementarity System (LCS). We derive sufficient … Read more

Spectral relaxations and branching strategies for global optimization of mixed-integer quadratic programs

We consider the global optimization of nonconvex quadratic programs and mixed-integer quadratic programs. We present a family of convex quadratic relaxations which are derived by convexifying nonconvex quadratic functions through perturbations of the quadratic matrix. We investigate the theoretical properties of these quadratic relaxations and show that they are equivalent to some particular semidefinite programs. … Read more

Template-based Minor Embedding for Adiabatic Quantum Optimization

Quantum Annealing (QA) can be used to quickly obtain near-optimal solutions for Quadratic Unconstrained Binary Optimization (QUBO) problems. In QA hardware, each decision variable of a QUBO should be mapped to one or more adjacent qubits in such a way that pairs of variables defining a quadratic term in the objective function are mapped to … Read more

Seamless Multimodal Transportation Scheduling

Ride-hailing services have expanded the role of shared mobility in passenger transportation systems, creating new markets and creative planning solutions for major urban centers. In this paper, we consider their use for last-mile passenger transportation in coordination with a mass transit service to provide a seamless multimodal transportation experience for the user. A system that … Read more

The Integrated Last-Mile Transportation Problem

Last-mile transportation (LMT) refers to any service that moves passengers from a hub of mass transportation (MT), such as air, boat, bus, or train, to destinations, such as a home or an office. In this paper, we introduce the problem of scheduling passengers jointly on MT and LMT services, with passengers sharing a car, van, … Read more

Degeneracy in Maximal Clique Decomposition for Semidefinite Programs

Exploiting sparsity in Semidefinite Programs (SDP) is critical to solving large-scale problems. The chordal completion based maximal clique decomposition is the preferred approach for exploiting sparsity in SDPs. In this paper, we show that the maximal clique-based SDP decomposition is primal degenerate when the SDP has a low rank solution. We also derive conditions under … Read more

ADMM for Convex Quadratic Programs: Linear Convergence and Infeasibility Detection

In this paper, we analyze the convergence of Alternating Direction Method of Multipliers (ADMM) on convex quadratic programs (QPs) with linear equality and bound constraints. The ADMM formulation alternates between an equality constrained QP and a projection on the bounds. Under the assumptions of: (i) positive definiteness of the Hessian of the objective projected on … Read more

Global Optimization of Nonlinear Network Design

A novel approach for obtaining globally optimal solutions to design of networks with nonlinear resistances and potential driven flows is proposed. The approach is applicable to networks where the potential loss on an edge in the network is governed by a convex and strictly monotonically increasing function of flow rate. We introduce a relaxation of … Read more