Subset selection in sparse matrices

In subset selection we search for the best linear predictor that involves a small subset of variables. From a computational complexity viewpoint, subset selection is NP-hard and few classes are known to be solvable in polynomial time. Using mainly tools from discrete geometry, we show that some sparsity conditions on the original data matrix allow … Read more

New SOCP relaxation and branching rule for bipartite bilinear programs

A bipartite bilinear program (BBP) is a quadratically constrained quadratic optimization problem where the variables can be partitioned into two sets such that fixing the variables in any one of the sets results in a linear program. We propose a new second order cone representable (SOCP) relaxation for BBP, which we show is stronger than … Read more

Sparse principal component analysis and its l1-relaxation

Principal component analysis (PCA) is one of the most widely used dimensionality reduction methods in scientific data analysis. In many applications, for additional interpretability, it is desirable for the factor loadings to be sparse, that is, we solve PCA with an additional cardinality (l0) constraint. The resulting optimization problem is called the sparse principal component … Read more

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs

In this paper, we study the strength of aggregation cuts for sign-pattern integer programs (IPs). Sign-pattern IPs are a generalization of packing IPs and are of the form {x \in Z^n | Ax = 0} where for a given column j, A_{ij} is either non-negative for all i or non-positive for all i. Our first … Read more

Lower bounds on the lattice-free rank for packing and covering integer programs

In this paper, we present lower bounds on the rank of the split closure, the multi-branch closure and the lattice-free closure for packing sets as a function of the integrality gap. We also provide a similar lower bound on the split rank of covering polyhedra. These results indicate that whenever the integrality gap is high, … Read more

Matrix Minor Reformulation and SOCP-based Spatial Branch-and-Cut Method for the AC Optimal Power Flow Problem

Alternating current optimal power flow (AC OPF) is one of the most fundamental optimization problems in electrical power systems. It can be formulated as a semidefinite program (SDP) with rank constraints. Solving AC OPF, that is, obtaining near optimal primal solutions as well as high quality dual bounds for this non-convex program, presents a major … Read more

Improving the Randomization Step in Feasibility Pump

Feasibility pump (FP) is a successful primal heuristic for mixed-integer linear programs (MILP). The algorithm consists of three main components: rounding fractional solution to a mixed-integer one, projection of infeasible solutions to the LP relaxation, and a randomization step used when the algorithm stalls. While many generalizations and improvements to the original Feasibility Pump have … Read more

Aggregation-based cutting-planes for packing and covering integer programs

In this paper, we study the strength of Chvatal-Gomory (CG) cuts and more generally aggregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained as follows: Given an IP formulation, we first generate a single implied inequality using aggregation of the original constraints, then obtain the integer hull of the set defined … Read more

Some cut-generating functions for second-order conic sets

In this paper, we study cut generating functions for conic sets. Our first main result shows that if the conic set is bounded, then cut generating functions for integer linear programs can easily be adapted to give the integer hull of the conic integer program. Then we introduce a new class of cut generating functions … Read more

How to choose what you lift

We explore the lifting question in the context of cut-generating functions. Most of the prior literature on lifting for cut-generating functions focuses on which cut-generating functions have the unique lifting property. Here we develop a general theory for under- standing how to do lifting for cut-generating functions which do not have the unique lifting property. … Read more