Nonlinear Model Predictive Control via Feasibility-Perturbed Sequential Quadratic Programming

Model predictive control requires the solution of a sequence of continuous optimization problems that are nonlinear if a nonlinear model is used for the plant. We describe briefly a trust-region feasibility-perturbed sequential quadratic programming algorithm (developed in a companion report), then discuss its adaptation to the problems arising in nonlinear model predictive control. Computational experience … Read more

The Empirical Behavior of Sampling Methods for Stochastic Programming

We investigate the quality of solutions obtained from sample-average approximations to two-stage stochastic linear programs with recourse. We use a recently developed software tool executing on a computational grid to solve many large instances of these problems, allowing us to obtain high-quality solutions and to verify optimality and near-optimality of the computed solutions in various … Read more

Object-Oriented Software for Quadratic Programming

We describe the object-oriented software package OOQP for solving convex quadratic programming problems (QP). The primal-dual interior point algorithms supplied by OOQP are implemented in a way that is largely independent of the problem structure. Users may exploit problem structure by supplying linear algebra, problem data, and variable classes that are customized to their particular … Read more

Properties of the Log-Barrier Function on Degenerate Nonlinear Programs

We examine the sequence of local minimizers of the log-barrier function for a nonlinear program near a solution at which second-order sufficient conditions and the Mangasarian-Fromovitz constraint qualifications are satisfied, but the active constraint gradients are not necessarily linearly independent. When a strict complementarity condition is satisfied, we show uniqueness of the local minimizer of … Read more

Decomposition Algorithms for Stochastic Programming on a Computational Grid

We describe algorithms for two-stage stochastic linear programming with recourse and their implementation on a grid computing platform. In particular, we examine serial and asynchronous versions of the L-shaped method and a trust-region method. The parallel platform of choice is the dynamic, heterogeneous, opportunistic platform provided by the Condor system. The algorithms are of master-worker … Read more

Constraint Identification and Algorithm Stabilization for Degenerate Nonlinear Programs

In the vicinity of a solution of a nonlinear programming problem at which both strict complementarity and linear independence of the active constraints may fail to hold, we describe a technique for distinguishing weakly active from strongly active constraints. We show that this information can be used to modify the sequential quadratic programming algorithm so … Read more

Optimization on Computational Grids

We define the concept of a computational grid, and describe recent work in solving large and complex optimization problems on this type of platform; in particular, integer programming, the quadratic assignment problem, and stochastic programming problems. This article focuses on work conducted in the metaneos project. Citation Preprint, Mathematics and Computer Science Division, Argonne National … Read more

On reduced QP formulations of monotone LCP problems

Techniques for transforming convex quadratic programs (QPs) into monotone linear complementarity problems (LCPs) and vice versa are well known. We describe a class of LCPs for which a reduced QP formulation—one that has fewer constraints than the “standard” QP formulation—is available. We mention several instances of this class, including the known case in which the … Read more

Warm start strategies in interior-point methods for linear programming

We study the situation in which, having solved a linear program with an interior-point method, we are presented with a new problem instance whose data is slightly perturbed from the original. We describe strategies for recovering a “warm-start” point for the perturbed problem instance from the iterates of the original problem instance. We obtain worst-case … Read more